Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic sex determination let ancient species adapt to ocean life

18.09.2009
Live birth -- key to much marine life -- depends upon evolution of chromosomal sex determination

A new analysis of extinct sea creatures suggests that the transition from egg-laying to live-born young opened up evolutionary pathways that allowed these ancient species to adapt to and thrive in open oceans.

The evolutionary sleuthing is described this week in the journal Nature by scientists at Harvard University and the University of Reading who also report that the evolution of live-born young depended crucially on the advent of genes -- rather than incubation temperature -- as the primary determinant of offspring sex.

Having drawn this link in three lineages of extinct marine reptiles -- mosasaurs, sauropterygians, and ichthyosaurs -- the scientists say that genetic, or chromosomal, sex determination may have played a surprisingly strong role in adaptive radiations and the colonization of the world's oceans by a diverse array of species.

"Determining sex with genetic mechanisms allowed marine reptiles to give live birth, in the water, as opposed to laying eggs on a nesting beach," says Chris Organ, a research fellow in Harvard's Department of Organismic and Evolutionary Biology. "This freed these species from the need to move and nest on land. As a consequence extreme physical adaptations evolved in each group, such as the fluked tails, dorsal fins, and the wing-like limbs of ichthyosaurs."

Mosasaurs, sauropterygians, and ichthyosaurs invaded the Mesozoic seas between 251 million and 100 million years ago. All three groups of extinct marine reptiles breathed air, but evolved other adaptations to life in the open ocean, such as fin-shaped limbs, streamlined bodies, and changes in bone structure. Some evolved into enormous predators, such as porpoise-like ichthyosaurs that grew to more than 20 meters in length. Ichthyosaurs, and possibly mosasaurs, even evolved tail-first birth, an adaptation that helps modern whales and porpoises avoid drowning during birth.

"Losing the requirement of dry land during the life cycle of ichthyosaurs and other marine reptiles freed them to lead a completely aquatic existence, a shift that seems advantageous in light of the diversification that followed," says Daniel E. Janes, a research associate in Harvard's Department of Organismic and Evolutionary Biology.

Even though populations of most animals have males and females, the way sex is determined in offspring varies. Some animals rely primarily on sex chromosomes, as in humans where two X chromosomes make a female and an X and a Y chromosome make a male. Among living marine species, whales, porpoises, manatees, and sea snakes have chromosomal sex determination.

In sea turtles and saltwater crocodiles, on the other hand, the sex of offspring is generally determined by the temperature at which eggs incubate. These species are also bound to a semi-terrestrial existence because their gas-exchanging hard-shelled eggs must be deposited on land.

"No one has clearly understood how sex determination has co-evolved with live birth and egg laying," Organ says.

Organ, Janes, and colleagues show that evolution of live birth in a species depends on the prior evolution of genetic sex determination. Since the fossilized remains of pregnant mosasaurs, sauropterygians, and ichthyosaurs show that these species gave birth to live young, they must also have employed genetic sex determination, a point on which the fossil record is silent.

Organ and Janes' co-authors on the Nature paper are Andrew Meade and Mark Pagel of the University of Reading. Their work was funded by Harvard's Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology and by the National Institutes of Health.

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>