Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic Markers for Tracking Species

25.04.2012
At the supermarket checkout, hardly anybody enters prices manually anymore. Using scanners that can read the barcodes is much faster.
Biologists now want to use a similar procedure for identifying domestic animal and plant species more efficiently. German Barcode of Life (GBOL) is the name of an initiative on which zoologists and botanists are collaborating in Germany. Botanists from the University of Bonn have taken the lead for the flora. The overall coordination of the GBOL Project lies with the Zoological Research Museum Alexander Koenig in Bonn.

"In the DNA of living beings, we have identified sections as »DNA barcodes« that, while being almost identical within a certain species, differ among the various species," explained Prof. Dr. Dietmar Quandt from the Nees Institute for Biodiversity of Plants at the University of Bonn. "Based on these markers, we can then identify species unambiguously and relatively fast." The result of this analysis resembles a barcode at the supermarket; only that it does not come in black and white, but in four colors, with each one corresponding to one of the four letters of the genetic code.

What counts is only (the genetic) make-up

In classical biological taxonomy, animals and plants are identified by their external characteristics. "It is in species of a genus that resemble each other very closely, such as sedges, that definite identification can be a very long process," reported Prof. Quandt, Speaker for the botanical project within the GBOL Initiative. "In addition, we have to rely on competent experts here, who unfortunately are a dying breed nationally." Fully automated sequencing of DNA, however, allows identifying plants much faster. "Besides, we do not need flowering and complete plants," added Stefanie Winter, one of Prof. Quandt's doctoral candidates. "A tiny fragment, e.g., from a leaf, is sufficient for identifying the species based on its genetic markers."

More than 5,000 plant species to be collected

In the GBOL Project, the scientists first want to create a library of sample material for classifying the species. In a concerted initiative with the natural history museums, nature conservancy organizations and proven experts, specific plant samples will be catalogued throughout Germany. "For this purpose, the natural history collections have proven to be invaluable treasure troves since they are providing us with some of their priceless samples," said Prof. Quandt. The challenge is enormous: There are about 4,000 flowering plants in Germany, as well as 1,300 species of mosses and ferns.

Project to Improve Monitoring of the Environment
Capturing our flora by means of DNA barcodes is intended to make monitoring environmental effects easier: How do individual species respond to climate change? Are certain species being replaced by living organisms that have been imported from other countries? Which species are threatened with extinction? "Given the many threats for life on Earth, environmental monitoring is becoming more important," said Prof. Quandt. "The DNA barcodes can simplify and accelerate such studies considerably."

Botanical Project Supported with 850,000 Euros

The German Federal Ministry for Education and Research (BMBF) is supporting the collection of plant DNA barcodes in Germany with approximately 850,000 Euros. This botanical research network also includes the Botanical Garden Berlin (BGBM, Freie Universität Berlin), the Institute for Evolution and Biodiversity (University of Münster), the Stuttgart State Museum of Natural History, as well as the Albrecht-von-Haller-Institut für Pflanzenwissenschaften (University of Göttingen). Overall coordination of the GBOL Project lies with the Zoological Research Museum Alexander Koenig in Bonn.

Contact:

Prof. Dr. Dietmar Quandt
University of Bonn
Nees Institute for Biodiversity of Plants
Ph.: +49 228/733315
Email: quandt@uni-bonn.de

Dr. Stephanie Pietsch
Zoological Research Museum Alexander Koenig
Museumsmeile Bonn
Adenauerallee 160
D-53113 Bonn
Email: info@bol-germany.de

Johannes Seiler | idw
Further information:
http://www.bolgermany.de/
http://www.uni-bonn.de

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>