Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic marker may help predict success of kidney transplants

02.12.2014

Kidneys donated by people born with a small variation in the code of a key gene may be more likely, once in the transplant recipient, to accumulate scar tissue that contributes to kidney failure, according to a study led by researchers at the Icahn School of Medicine at Mount Sinai and published today in the Journal of Clinical Investigation.

If further studies prove the variation to cause fibrosis (scarring) in the kidneys of transplant recipients, researchers may be able to use it to better screen potential donors and improve transplant outcomes. Furthermore, uncovering the protein pathways that trigger kidney fibrosis may help researchers design drugs that prevent this disease process in kidney transplant recipients, and perhaps in all patients with chronic kidney disease.

"It is critically important that we identify new therapeutic targets to prevent scarring within transplanted kidneys, and our study has linked a genetic marker, and related protein pathways, to poor outcomes in kidney transplantation," said Barbara Murphy, MD, Chair, Department of Medicine, Murray M. Rosenberg Professor of Medicine (Nephrology) and Dean for Clinical Integration and Population Health at the Icahn School of Medicine at Mount Sinai. "Drug designers may soon be able to target these mechanisms."

A commonly used study type in years, the genome-wide association study (GWAS) looks at differences at many points in the genetic code to see if, across a population, any given variation in the genetic code is found more often in those with a given trait; in the case of the current study, with increased fibrosis in recipients of donated kidneys.

Even the smallest genetic variations, called single nucleotide polymorphisms (SNPs), can have a major impact on a trait by swapping just one of 3.2 billion "letters" making up the human DNA code. The current study found a statistically significant association between SNP identified as rs17319721 in the gene SHROOM3 and progressive kidney scarring (fibrosis) and function loss in a group of kidney donors, mostly of European descent. In many cases, certain SNPs will be more common in families or ethnic groups.

The kidneys filter the blood to remove extra blood sugar and waste products that trickle down the kidney tubes to become urine, while re-absorbing key nutrients. The build-up of scar tissue in these delicate structures over time interferes with proper renal function.

Chronic kidney disease already affects 10 percent of US adults and its prevalence is increasing. Along with leading to kidney failure in many cases, chronic kidney disease increases the risk of cardiovascular disease. Fibrosis in kidney tubules is a common pathogenic process for many types of chronic kidney disease, and a central part of chronic disease in donated kidneys (chronic allograft nephropathy, or CAN).

CAN comes with a steady, gradual loss of function in the donated kidneys. A significant percentage of patients with chronic kidney disease and fibrosis in their kidney tubules will eventually progress to renal failure that requires dialysis or transplantation of kidneys, with demand far higher that supply. To date, there is no effective therapy to prevent the progression of kidney disease.

Researchers and clinicians have made great gains in preventing transplant rejection during the first few years by selectively suppressing the immune system, but long term damage and disease remain a major challenge. The eventual development of an assay to predict whether a donor's kidney, once transplanted, would be more susceptible to inflammation or scarring may help overcome this challenge.

Newfound Pathways Reveal Drug Targets

The Journal of Clinical Investigation study found that the SNP rs17319721 in the gene SHROOM3, when present in the donor of kidney, correlates with increased expression of the SHROOM3 genes, and a greater quantity of SHROOM3 protein in the organ once transplanted. More SHROOM3 turns on more transcription factor 7-like 2 (TCF7L2). This, in turn, turns on several genes with many functions in cells. TCF7L2 is a member of the Wnt signaling pathway, and ultimately results in increased signaling by transforming growth factor beta 1 (TGF-β1) and increased COL1A1 expression.

TGF-β1 signals for the building of connective tissue (scar tissue), which normally restores tissue architecture as part of healing, but may also drive fibrosis in the wrong context. COL1A1 (Collagen, type I, alpha 1) is the gene that codes for the major component in type I collagen, the major protein component of connective tissues (e.g. bone. cartilage) and of scar tissue that forms as wounds heal. Together, these factors contribute to excess tissue fibrosis.

While SHROOM3 had been associated with chronic kidney disease by earlier work, the specific role of and mechanisms by which SHROOM3 contributed to transplant injury and kidney fibrosis was unknown going into this study.

The current study results proceed from an ongoing NIH-sponsored study in kidney transplant recipients [Genomics of Chronic Allograft Rejection (GOCAR) study]. The research team performed biopsies of transplanted kidneys at pre-specified time points after transplantation and matched gene activation (expression) levels in the transplanted kidneys 3 months after transplantation to indices of transplant dysfunction at 12 months.

The link between the SHROOM3 gene, related protein pathways and fibrosis detected in the GWAS was confirmed in studies of mice engineered to be models of human kidney disease.

"Further work is needed before a clinical application of the study can be introduced," said Dr. Murphy. "However, our results are a crucial and optimistic step towards improving treatment of chronic kidney disease."

About the Mount Sinai Health System

The Mount Sinai Health System is an integrated health system committed to providing distinguished care, conducting transformative research, and advancing biomedical education. Structured around seven member hospital campuses and a single medical school, the Health System has an extensive ambulatory network and a range of inpatient and outpatient services--from community‐based facilities to tertiary and quaternary care.

The System includes approximately 6,600 primary and specialty care physicians, 12‐minority‐owned free‐standing ambulatory surgery centers, over 45 ambulatory practices throughout the five boroughs of New York City, Westchester, and Long Island, as well as 31 affiliated community health centers. Physicians are affiliated with the Icahn School of Medicine at Mount Sinai, which is ranked among the top 20 medical schools both in National Institutes of Health funding and by U.S. News & World Report.

For more information, visit http://www.mountsinai.org , or find Mount Sinai on Facebook, Twitter and YouTube.

David Slotnick | EurekAlert!

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>