Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The genetic heart of the lipids: Population cohort study finds six genetic variants associated with 'bad' cholesterol

08.12.2008
A new study presages a real aim of genetics: to look at whole populations to in order determine the significance of individual genetic variants for individual health. The research team, whose work is published in Nature Genetics, find six novel genetic variants that are associated with lipid levels, a common indicator of heart or artery disease.

The power of 'genetic microscopes' has increased because the methods are in place to study many thousands of DNA samples. This study, involving over 20,000 samples and researchers from a dozen European countries, is the first to find such lipid–gene links by looking at the general population, rather than patients. The study is has been funded by an EU project, ENGAGE (www.euengage.org)

A search for a lipid–gene link through such large numbers of unselected people has not been published before. The findings increase hopes for improved predictive diagnosis, which could lead to improved public health measures and early prescription of effective treatments.

"Since 2007, human genetics has achieved results that would have been unimaginable only five years ago," explains Professor Leena Peltonen, Head of Human Genetics at the Wellcome Trust Sanger Institute and senior author on the study, "but this is merely the dawn of new understanding. New, more powerful studies, such as our work on lipid levels, will illuminate the areas and the variants of our genome that play an important part in human disease."

Human geneticists often carry out case-control studies: researchers examine the genetics of people with a given disease (the 'cases') and compare them to the genetics of apparently unaffected people (the 'controls'). Such studies have been hugely successful in trailblazing discovery of genetic variants associated with common disease. However, because the people participating are not drawn at random, researchers are cautious about extrapolating their findings. If we wish to understand the real impact of the identified gene for a disease risk at the population level for disease risk we need to study population cohorts.

A population-based study, in which no selection is made, should address most of the concerns over case-control studies. However, in these studies, scientists are searching for signs of a genetic effect in a much wider group, most of whom will not have any susceptibility to a particular disease.

"It was important that we should be able to find previously known genetic associations with lipid levels: of the 22 regions we describe, 16 have been described previously," explains Cornelia van Duijn, from Erasmus University in Rotterdam, the Netherlands. "This impressive result shows that not only can we find the known genetic associations, but we can also find novel associations in this large-scale collaboration of very diverse population-based cohort studies spanning populations from Lapland to the Dalmatian Islands.

"We will be able to move forward much more quickly if we can look at other diseases in studies such as ours, pooling resources across European populations."

The team were also able to show differences between the sexes: lipid values are known to differ for males and females, as does the prevalence of cardiovascular diseases. The team found significantly different sex-specific effects for some genome regions: the two strongest signals were in near HMGCR and NCAN. HMGCR produces an important enzyme involved in cholesterol synthesis and is the drug target for statins, commonly used for treating high values of 'bad cholesterol', LDL. The region around NCAN gene has previously been associated with both LDL and triglyceride levels, associated with coronary heart disease.

The results are part of an emerging portrait of genes determining lipid levels: a major aim is to predict more efficiently those at risk of coronary heart disease. The profiles developed using the new genetic variants are better at identifying those at risk of increased lipid levels, but do not yet improve the prediction of artery or heart disease.

Screening for a person with high lipid levels and early treatment with statins is one of the major strategies in the prevention of cardiovascular risk in clinical practice while a healthy diet, weight control and physical activity is the major population level prevention strategy.

"We can be confident that the increased understanding of the control of lipid levels that will come from these genetic discoveries, will, in time, lead to improved ways of treating and preventing heart disease and stroke" explains Mark McCarthy, Robert Turner Professor of Diabetes at the University of Oxford. "In addition, as we become better at identifying those individuals who are at most at risk of these diseases, we should be able to target our therapeutic and preventative efforts more efficiently, perhaps focusing on changing lifestyles in those most likely to benefit".

This work is a collaborative effect of a large group of researchers that was brought together by a research grant from the European Union (Framework 7). This work would not have been possible without the thousands of participants of the various studies in the European Union and Australia.

Don Powell | alfa
Further information:
http://www.euengage.org/
http://www.sanger.ac.uk

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>