Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel genetic finding offers new avenue for future Crohn's disease treatment

13.07.2009
Case Western Reserve researchers identify links between inflammatory disease genes

Researchers from Case Western Reserve University School of Medicine identified a novel link between ITCH, a gene known to regulate inflammation in the body and NOD2, a gene which causes the majority of genetic Crohn's Disease diagnoses.

ITCH, when malfunctioning, causes widespread inflammatory diseases, including inflammatory bowel disease, gastritis, uncontrolled skin inflammation, and pulmonary pneumonitis. Derek Abbott, M.D., Ph.D., and his team of researchers found that ITCH also influences NOD2-induced inflammation.

These findings, published in the August 11th issue of Current Biology, suggest a common pathophysiology exists between multiple inflammatory diseases. The unexpected finding of the interaction between these genes offers the possibility of a new drug target, which would be effective in treating Crohn's disease – a chronic disorder causing inflammation of the gastrointestinal tract.

Autoimmune and inflammatory diseases are striking an increasing portion of the population. They result from an overstimulation of the immune system by the infectious and environmental agents individuals face daily. Unfortunately, despite their increasing prevalence in the Western world and morbidity among younger patients, the pathophysiology of these enigmatic diseases is poorly understood and for this reason, treatment for these diseases is less-than-ideal.

This finding links two key signaling pathways to the pathophysiology of diseases associated with ITCH and NOD2 and opens new avenues of pharmacologic pursuit to target these diseases. With an eye towards clinical applications, Dr. Abbott and his colleagues' next step is to determine if currently used pharmacologic agents can be useful in this model of inflammatory disease. They will do so using small molecule drug screening to identify potential drugs that target ITCH.

Of those diagnosed with Crohn's disease, 30 percent have the NOD2 mutation in their genes. For these individuals, this discovery opens up the possibility of individually-tailored treatments with better efficacy toward a particular patient's disease.

"This research is an excellent example of how scientific investments benefit the public with measureable gains. In this case, it led to unexpected insights and opened new fields of endeavor for pharmacological manipulation in this serious chronic disease," says Derek Abbott, M.D., Ph.D., assistant professor of pathology, Case Western Reserve University School of Medicine. "This sort of study will help uncover the pathologic mechanism of disease and ultimately lead to more rational and carefully measured treatment."

About Case Western Reserve University School of Medicine

Founded in 1843, Case Western Reserve University School of Medicine is the largest medical research institution in Ohio and is among the nation's top medical schools for research funding from the National Institutes of Health. The School of Medicine is recognized throughout the international medical community for outstanding achievements in teaching. The School's innovative and pioneering Western Reserve2 curriculum interweaves four themes--research and scholarship, clinical mastery, leadership, and civic professionalism--to prepare students for the practice of evidence-based medicine in the rapidly changing health care environment of the 21st century. Eleven Nobel Laureates have been affiliated with the school.

Annually, the School of Medicine trains more than 770 M.D. and M.D./Ph.D. students and ranks in the top 25 among U.S. research-oriented medical schools as designated by U.S. News & World Report "Guide to Graduate Education."

The School of Medicine's primary affiliate is University Hospitals Case Medical Center and is additionally affiliated with MetroHealth Medical Center, the Louis Stokes Cleveland Department of Veterans Affairs Medical Center, and the Cleveland Clinic, with which it established the Cleveland Clinic Lerner College of Medicine of Case Western Reserve University in 2002. http://casemed.case.edu.

Jessica Studeny | EurekAlert!
Further information:
http://www.case.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>