Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic evidence for single bacteria cause of sepsis identified for the first time

21.03.2014

University of Leicester academic involved in study into single bacteria causes of systematic disease

An international team of academics, including Professor Marco Oggioni from the University of Leicester's Department of Genetics, has studied how localised infections can turn into the dangerous systematic disease sepsis – and has identified for the first time through genetic evidence that a single bacteria could be the cause.


Rather than from a mixture of cooperating bacteria, sepsis seems to originate from a single bacterial cell.

Credit: Image credit: Marco R. Oggioni

The study, which has been published in the academic journal PLOS Pathogens, examined the events that lead to sepsis by Streptococcus pneumoniae (pneumococcus), a major human pathogen, in mice. They found that in most cases the bacteria causing sepsis was started by a single pneumococcal cell.

The study was an interdisciplinary collaboration between the Departments of Genetics, Infection Immunity and Inflammation and Mathematics at the University of Leicester, Professor Richard Moxon at the University of Oxford and scientists from overseas including the University of Siena.

... more about:
»Genetic »bacteria »immune »injected »macrophages »systemic

Professor Oggioni said: "Our data in experimental infection models indicate that we do not need only strategies which target many bacteria when it is too late, but that early intervention schemes which prevent the one-single cell that starts the disease process might provide substantial benefit to the patient.

"In this work we have for the first time provided genetic evidence for a single cell origin of bacterial invasive infection. The scenario was hypothesised over 50 years ago, but so far only phenotypic and statistical evidence could be obtained for this event."

Under normal circumstances, when different bacteria are used in models of experimental infection of hosts who have not previously encountered the same pathogen, the vast majority is destroyed rapidly by the host's innate immune system.

In the researcher's model, a dose of one million bacteria is needed to induce systemic disease in about half of the hosts in the study.

This is in stark contrast to a much lower number of bacteria thought to make up the starting "seed" that leads to the development of systemic infection - and the assumption is that there must be one or more "bottlenecks" in the development of the disease.

To investigate these bottlenecks, the researchers injected mice with a mix of three different variants of S. pneumoniae. About half of the mice developed sepsis and in almost all cases the bacteria causing sepsis were derived from only one of the three variants used in the initial challenge.

Using statistical analysis as well as direct DNA sequencing, the researchers could show that in most cases the bacterial population causing sepsis was started by a single pneumococcal cell.

When the researchers looked closer at how the immune system resists most injected bacteria, they found that macrophages, a type of immune cell that can gobble up bacteria, and specifically macrophages in the spleen, are the main contributors to an efficient immune response to this pathogen.

Their findings suggest that if bacteria survive this initial counter-attack, a single 'founder' bacterium multiplies and re-enters the bloodstream, where its descendants come under strong selective pressure that dynamically shapes the subsequent bacterial population – resulting in the sepsis.

The data also suggests that the single bacterium leading to sepsis has no obvious characteristics that give it an advantage over the 999,999 others, but that random events determine which of the injected bacteria survives and multiplies to cause disease.

It is believed that the findings, suggesting that the development of sepsis starting from a single founding cell which survives the immune system's initial counter-attack in mice, could also potentially apply to human systemic infections.

This information could prove vital to understanding sepsis, as the causes of the disease are still largely unknown to the scientific community.

Dr Oggioni added: "Knowing that there is a moment when a single bacterial cell escapes "normal" immune surveillance at the beginning of each invasive infection is an important paradigm and essential information which, in our opinion, should lead to changes in therapeutic protocols in order to maximise success of treatment outcome."

###

The study, 'The Role of Host and Microbial Factors in the Pathogenesis of Pneumococcal Bacteraemia Arising from a Single Bacterial Cell Bottleneck', has been published in the academic journal PLOS Pathogens on Thursday 20 March.

Marco Oggioni | EurekAlert!

Further reports about: Genetic bacteria immune injected macrophages systemic

More articles from Life Sciences:

nachricht Tracking the American Woodcock
28.07.2015 | University of Arkansas, Fayetteville

nachricht Possible Path Toward First Anti-MERS Drugs
28.07.2015 | American Crystallographic Association (ACA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

Im Focus: Simulations lead to design of near-frictionless material

Argonne scientists used Mira to identify and improve a new mechanism for eliminating friction, which fed into the development of a hybrid material that exhibited superlubricity at the macroscale for the first time. Argonne Leadership Computing Facility (ALCF) researchers helped enable the groundbreaking simulations by overcoming a performance bottleneck that doubled the speed of the team's code.

While reviewing the simulation results of a promising new lubricant material, Argonne researcher Sanket Deshmukh stumbled upon a phenomenon that had never been...

Im Focus: NASA satellite camera provides 'EPIC' view of Earth

A NASA camera on the Deep Space Climate Observatory (DSCOVR) satellite has returned its first view of the entire sunlit side of Earth from one million miles away.

The color images of Earth from NASA's Earth Polychromatic Imaging Camera (EPIC) are generated by combining three separate images to create a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Possible Path Toward First Anti-MERS Drugs

28.07.2015 | Life Sciences

Smart Hydrogel Coating Creates “Stick-slip” Control of Capillary Action

28.07.2015 | Materials Sciences

Are Fish Getting High on Cocaine?

28.07.2015 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>