Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic evidence for single bacteria cause of sepsis identified for the first time

21.03.2014

University of Leicester academic involved in study into single bacteria causes of systematic disease

An international team of academics, including Professor Marco Oggioni from the University of Leicester's Department of Genetics, has studied how localised infections can turn into the dangerous systematic disease sepsis – and has identified for the first time through genetic evidence that a single bacteria could be the cause.


Rather than from a mixture of cooperating bacteria, sepsis seems to originate from a single bacterial cell.

Credit: Image credit: Marco R. Oggioni

The study, which has been published in the academic journal PLOS Pathogens, examined the events that lead to sepsis by Streptococcus pneumoniae (pneumococcus), a major human pathogen, in mice. They found that in most cases the bacteria causing sepsis was started by a single pneumococcal cell.

The study was an interdisciplinary collaboration between the Departments of Genetics, Infection Immunity and Inflammation and Mathematics at the University of Leicester, Professor Richard Moxon at the University of Oxford and scientists from overseas including the University of Siena.

... more about:
»Genetic »bacteria »immune »injected »macrophages »systemic

Professor Oggioni said: "Our data in experimental infection models indicate that we do not need only strategies which target many bacteria when it is too late, but that early intervention schemes which prevent the one-single cell that starts the disease process might provide substantial benefit to the patient.

"In this work we have for the first time provided genetic evidence for a single cell origin of bacterial invasive infection. The scenario was hypothesised over 50 years ago, but so far only phenotypic and statistical evidence could be obtained for this event."

Under normal circumstances, when different bacteria are used in models of experimental infection of hosts who have not previously encountered the same pathogen, the vast majority is destroyed rapidly by the host's innate immune system.

In the researcher's model, a dose of one million bacteria is needed to induce systemic disease in about half of the hosts in the study.

This is in stark contrast to a much lower number of bacteria thought to make up the starting "seed" that leads to the development of systemic infection - and the assumption is that there must be one or more "bottlenecks" in the development of the disease.

To investigate these bottlenecks, the researchers injected mice with a mix of three different variants of S. pneumoniae. About half of the mice developed sepsis and in almost all cases the bacteria causing sepsis were derived from only one of the three variants used in the initial challenge.

Using statistical analysis as well as direct DNA sequencing, the researchers could show that in most cases the bacterial population causing sepsis was started by a single pneumococcal cell.

When the researchers looked closer at how the immune system resists most injected bacteria, they found that macrophages, a type of immune cell that can gobble up bacteria, and specifically macrophages in the spleen, are the main contributors to an efficient immune response to this pathogen.

Their findings suggest that if bacteria survive this initial counter-attack, a single 'founder' bacterium multiplies and re-enters the bloodstream, where its descendants come under strong selective pressure that dynamically shapes the subsequent bacterial population – resulting in the sepsis.

The data also suggests that the single bacterium leading to sepsis has no obvious characteristics that give it an advantage over the 999,999 others, but that random events determine which of the injected bacteria survives and multiplies to cause disease.

It is believed that the findings, suggesting that the development of sepsis starting from a single founding cell which survives the immune system's initial counter-attack in mice, could also potentially apply to human systemic infections.

This information could prove vital to understanding sepsis, as the causes of the disease are still largely unknown to the scientific community.

Dr Oggioni added: "Knowing that there is a moment when a single bacterial cell escapes "normal" immune surveillance at the beginning of each invasive infection is an important paradigm and essential information which, in our opinion, should lead to changes in therapeutic protocols in order to maximise success of treatment outcome."

###

The study, 'The Role of Host and Microbial Factors in the Pathogenesis of Pneumococcal Bacteraemia Arising from a Single Bacterial Cell Bottleneck', has been published in the academic journal PLOS Pathogens on Thursday 20 March.

Marco Oggioni | EurekAlert!

Further reports about: Genetic bacteria immune injected macrophages systemic

More articles from Life Sciences:

nachricht Great apes communicate cooperatively
25.05.2016 | Max-Planck-Institut für Ornithologie

nachricht Rice study decodes genetic circuitry for bacterial spore formation
24.05.2016 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

LZH shows the potential of the laser for industrial manufacturing at the LASYS 2016

25.05.2016 | Trade Fair News

Great apes communicate cooperatively

25.05.2016 | Life Sciences

Thermo-Optical Measuring method (TOM) could save several million tons of CO2 in coal-fired plants

25.05.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>