Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic engineering: Speeding up evolution

13.10.2011
Generating microbes with useful properties is quicker and easier if multiple genes are modified at the same time

Genetically engineered microorganisms with improved properties are of vital interest in the advancement of modern medicine, as well as the agriculture and food industry. Biotechnology enables modification of specific genes in an organism to produce desirable properties—for example, the ability to withstand extreme environmental conditions or to catalyze a chemical reaction—but modifying complex traits can be time-consuming and expensive due to the large number of genes involved.

Hua Zhao and co-workers at the A*STAR Institute of Chemical and Engineering Sciences1 have now developed a technique called error-prone whole genome amplification (WGA) that enables modification of numerous genes at the same time. To illustrate the potential of the new technique, the researchers applied it to create yeast cells capable of surviving high levels of ethanol.

Metabolism of ethanol in yeast is a complex trait that requires the action of 40 to 60 genes. The researchers isolated DNA from Saccharomyces cerevisiae—one of the most useful forms of yeast widely used in baking and brewing since ancient times—and copied it using the powerful polymerase chain reaction (PCR) technique that amplifies DNA sequences. The key to error-prone WGA is the introduction of random DNA copying errors through imperfect reaction conditions during PCR. The researchers established the mutagenic reaction conditions by adding gene-damaging manganese chloride to the reaction mixture in order to produce DNA with plenty of mutations.

Zhao and co-workers introduced copies of mutated DNA back into S. cerevisiae—a process known as transformation. Normal yeast cells are capable of surviving on a medium containing 7% ethanol. The transformed cells were grown on a medium initially comprising 8.5% ethanol.

The researchers harvested DNA from cells that survived on the high-ethanol medium, and then repeated the error-prone PCR and transformation cycle twice. By the third cycle, cells that were able to survive on a medium containing 9% ethanol had been isolated. The method is an example of directed evolution, which uses the power of natural selection to speed up the process of adapting to changes in environmental conditions in order to develop microorganisms with properties that are biotechnologically useful.

Error-prone WGA is unique in that its direct manipulation of DNA in vitro is slower and more complex than in vivo methods. “The new method enables rapid evolution of complex phenotypes of microorganisms”, says Zhao, whose team has already begun to characterize the proteins and genes in the ethanol-tolerant yeast cells using proteomic and whole genome studies. In future, error-prone WGA may also be extended to other microorganisms.

Luhe, A. L., Tan, L., Wu, J. & Zhao, H. Increase of ethanol tolerance of Saccharomyces cerevisiae by error-prone whole genome amplification. Biotechnology Letters 33, 1007–1011

Lee Swee Heng | Research asia research news
Further information:
http://www.research.a-star.edu.sg/
http://www.researchsea.com

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>