Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic engineering: Speeding up evolution

13.10.2011
Generating microbes with useful properties is quicker and easier if multiple genes are modified at the same time

Genetically engineered microorganisms with improved properties are of vital interest in the advancement of modern medicine, as well as the agriculture and food industry. Biotechnology enables modification of specific genes in an organism to produce desirable properties—for example, the ability to withstand extreme environmental conditions or to catalyze a chemical reaction—but modifying complex traits can be time-consuming and expensive due to the large number of genes involved.

Hua Zhao and co-workers at the A*STAR Institute of Chemical and Engineering Sciences1 have now developed a technique called error-prone whole genome amplification (WGA) that enables modification of numerous genes at the same time. To illustrate the potential of the new technique, the researchers applied it to create yeast cells capable of surviving high levels of ethanol.

Metabolism of ethanol in yeast is a complex trait that requires the action of 40 to 60 genes. The researchers isolated DNA from Saccharomyces cerevisiae—one of the most useful forms of yeast widely used in baking and brewing since ancient times—and copied it using the powerful polymerase chain reaction (PCR) technique that amplifies DNA sequences. The key to error-prone WGA is the introduction of random DNA copying errors through imperfect reaction conditions during PCR. The researchers established the mutagenic reaction conditions by adding gene-damaging manganese chloride to the reaction mixture in order to produce DNA with plenty of mutations.

Zhao and co-workers introduced copies of mutated DNA back into S. cerevisiae—a process known as transformation. Normal yeast cells are capable of surviving on a medium containing 7% ethanol. The transformed cells were grown on a medium initially comprising 8.5% ethanol.

The researchers harvested DNA from cells that survived on the high-ethanol medium, and then repeated the error-prone PCR and transformation cycle twice. By the third cycle, cells that were able to survive on a medium containing 9% ethanol had been isolated. The method is an example of directed evolution, which uses the power of natural selection to speed up the process of adapting to changes in environmental conditions in order to develop microorganisms with properties that are biotechnologically useful.

Error-prone WGA is unique in that its direct manipulation of DNA in vitro is slower and more complex than in vivo methods. “The new method enables rapid evolution of complex phenotypes of microorganisms”, says Zhao, whose team has already begun to characterize the proteins and genes in the ethanol-tolerant yeast cells using proteomic and whole genome studies. In future, error-prone WGA may also be extended to other microorganisms.

Luhe, A. L., Tan, L., Wu, J. & Zhao, H. Increase of ethanol tolerance of Saccharomyces cerevisiae by error-prone whole genome amplification. Biotechnology Letters 33, 1007–1011

Lee Swee Heng | Research asia research news
Further information:
http://www.research.a-star.edu.sg/
http://www.researchsea.com

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>