Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic Differences in Sense of Smell Identified Through Asparagus Urine Odor

30.09.2010
Scientists at the Monell Center have used a well-known example of individual differences to identify a genetic contribution to the sense of smell.

Most people detect a distinct sulfurous odor in their urine shortly after eating asparagus. However, there are some who seemingly do not notice the unpleasant odor. Up until now, it has been unclear whether this is because these individuals do not produce the odor or because they cannot smell it.

Addressing this mystery from several angles, scientists from the Monell Center first used sophisticated sensory testing techniques to show that both explanations apply: approximately eight percent of the subjects tested did not produce the odorous substance, while six percent were unable to smell the odor. One person both did not produce the odor and was unable to smell it.

Next, DNA samples collected from each subject revealed that the inability to smell asparagus odor was linked to genetic variation within a family of olfactory receptors.

“This is one of only a few examples to date showing genetic differences among humans in their sense of smell,” said study co-author Danielle Reed, Ph.D., a Monell behavioral geneticist. “Specifically, we have learned that changes in an olfactory receptor gene can have a large effect on a person’s ability to smell certain sulfurous compounds. Other such compounds include mercaptan, the chemical used to add odor to natural gas so that people are able to detect it.”

In the study, published online in the journal Chemical Senses, a total of 38 subjects each came to the laboratory on two separate occasions. One time they donated urine before and after eating roasted asparagus and the other time before and after eating bread.

The subjects next returned to the laboratory for sensory testing to determine their abilities both to produce and identify asparagus odor. Additional tests evaluated each subject’s ability to smell the odor of rose to make sure that they had a normal sense of smell.

Results of the study also provide an example of ways in which normal people differ in their metabolism.

“Although seemingly just a curiosity, the individual differences in metabolism could be important in other realms,” said study lead author Marcia Levin Pelchat, Ph.D., a sensory psychologist at Monell. “Additional studies are needed to determine whether the inability to produce the odor is associated with other metabolic traits or disorders.”

Cathy Bykowski and Fujiko Duke also contributed to the research, which was supported by Monell Center institutional funds.

The Monell Chemical Senses Center is an independent nonprofit basic research institute based in Philadelphia, Pennsylvania. Monell advances scientific understanding of the mechanisms and functions of taste and smell to benefit human health and well-being. Using an interdisciplinary approach, scientists collaborate in the programmatic areas of sensation and perception; neuroscience and molecular biology; environmental and occupational health; nutrition and appetite; health and well-being; development, aging and regeneration; and chemical ecology and communication.

Leslie Stein | Newswise Science News
Further information:
http://www.monell.org

Further reports about: Genetic clues Monell Urine NGAL asparagus sense sense of smell

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>