Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic differences help protect against cervical cancer

16.03.2009
Women with certain gene variations appear to be protected against cervical cancer, according to a study led by scientists at Albert Einstein College of Medicine of Yeshiva University and reported in Clinical Cancer Research. Knowing whether or not women have these genetic variants could help physicians to better tailor treatment strategies.

Virtually all cases of cervical cancer are caused by persistent infections from several of the human papillomaviruses (HPV) — a family of viruses that also cause common skin warts and genital warts. HPV is the most commonly sexually transmitted infection in young adults, yet only a small subset of these infections lead to cervical cancer.

"Some people are better able than others to mount an immune response that suppresses their HPV infection," says Mark H. Einstein, M.D., associate professor of obstetrics & gynecology and women's health at Einstein. "We suspected that this advantage was probably due to variations in genes that play key roles in the body's immune response."

To find out, the researchers recruited 480 women and divided them into two groups: those with high-grade cervical intraepithelial neoplasia (CIN), a premalignant condition caused by HPV that can lead to cervical cancer; and a control group of women who had tested positive for HPV but had not developed high-grade CIN.

The researchers took cells from the women and looked for genetic differences between the two groups. They focused on a gene called TAP, known to be crucial to the immune system's ability to recognize viruses and eliminate them from the body.

Dr. Einstein and his colleagues found that study participants had key differences at two locations in their TAP genes. Those women who possessed one or the other of these two gene variants were less than half as likely as other women to have developed high-grade CIN. Even women infected with the HPV types most likely to lead to cervical cancer were afforded protection by these variants. The finding suggests that knowledge of these genetic variants, known as polymorphisms, can provide important information regarding protection against cervical cancer.

"We're hopeful that our findings will lead to a genetic test that will help us predict which patients with persistent HPV infection are most likely to develop high-grade CIN and, ultimately, cervical cancer," says Dr. Einstein. "That knowledge should help us in mapping out effective treatment plans that are tailored to the individual patient. This trend of personalized medicine is becoming more common as new technologies offer hope of better tests."

The paper, "Genetic Variants in TAP are Associated with High-Grade Cervical Neoplasia," is published in the February edition of Clinical Cancer Research. Other Einstein researchers include Robert Burk, M.D., Gary Goldberg, M.D., Nicolas Schlecht, Ph.D., Suzanne Leanza, Ph.D., and Lydia G. Chiu, M.P.H. Contributing from Einstein and Long Island Jewish Medical Center, New Hyde Park, NY, was Bettie M. Steinberg, Ph.D.

Dr. Einstein's research was funded by the Gynecologic Cancer Foundation.

Deirdre Branley | EurekAlert!
Further information:
http://www.aecom.yu.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>