Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic differences larger between populations in Northern Europe

27.10.2008
Researchers at Karolinska Institutet and Helsinki University have shown that the genetic differences appear larger between the populations in Northern Europe than within Central Europe.

The genetic distance is especially notable between Eastern and Western Finland. The study is published in the science journal PLoS One and is important for the understanding of genetic factors behind human diseases.

- When studying diseases and treatments, it is important to match the studied group with a similar control group. Otherwise the results could be overestimated, when they in fact just shows normal differences between for instance different part of a country, says Professor Juha Kere at Karolinska Institutet in Stockholm.

Human population genetic studies have recently gained a new powerful tool from the analysis of densely spaced single nucleotide polymorphisms (SNPs) across the whole genome. In this study, almost 250 000 such polymorphisms were used to analyze genetic differences between the Germans, British, Eastern and Western Finns and Swedes.

The Germans and British' are genetically close to each other, which also have been observed in other recently published studies. The genetic distances between the Swedes and Finns are somewhat larger. The researchers also found that the genetic difference between Eastern and Western Finland was substantial in a European scale. Even between Finnish counties there were clear differences

- The larger genetic distances in the north are caused by differences in population history. The northernmost parts of Europe were inhabited later than Central Europe and by fewer people, and have had smaller populations since then, says Päivi Lahermo, research team leader at Helsinki University.

Publication: "Genome-Wide Analysis of Single Nucleotide Polymorphisms Uncovers Population Structure in Northern Europe", Elina Salmela, Tuuli Lappalainen, Ingegerd Fransson, Peter M. Andersen, Karin Dahlman-Wright, Andreas Fiebig, Pertti Sistonen, Marja-Liisa Savontaus, Stefan Schreiber, Juha Kere, Päivi Lahermo, PLoS One, 24 oktober 2008

Further information, please contact:

Professor Juha Kere,
Department of Biosciences and Nutrition
Karolinska Institutet
Tel: +46 (0)73-4213550
E-mail: juha.kere@ki.se
Dr Päivi Lahermo
Institute for Molecular Medicine Finland
Helsinki University
Tel: +358407206315
E-mail: paivi.lahermo@helsinki.fi
Press Officer Katarina Sternudd
Karolinska Institutet
Tel: +46 (0)8-524 838 95
E-mail: katarina.sternudd@ki.se
Karolinska Institutet is one of the leading medical universities in Europe. Through research, education and information, Karolinska Institutet contributes to improving human health. Each year, the Nobel Assembly at Karolinska Institutet awards the Nobel Prize in Physiology or Medicine.

Katarina Sternudd | idw
Further information:
http://ki.se
http://dx.plos.org/10.1371/journal.pone.0003519
http://ki.se/pressimages

More articles from Life Sciences:

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

nachricht UK chemistry researchers develop catalyst that mimics the z-scheme of photosynthesis
26.06.2017 | University of Kentucky

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

New 3-D model predicts best planting practices for farmers

26.06.2017 | Agricultural and Forestry Science

New research reveals impact of seismic surveys on zooplankton

26.06.2017 | Life Sciences

Correct connections are crucial

26.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>