Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic differences larger between populations in Northern Europe

27.10.2008
Researchers at Karolinska Institutet and Helsinki University have shown that the genetic differences appear larger between the populations in Northern Europe than within Central Europe.

The genetic distance is especially notable between Eastern and Western Finland. The study is published in the science journal PLoS One and is important for the understanding of genetic factors behind human diseases.

- When studying diseases and treatments, it is important to match the studied group with a similar control group. Otherwise the results could be overestimated, when they in fact just shows normal differences between for instance different part of a country, says Professor Juha Kere at Karolinska Institutet in Stockholm.

Human population genetic studies have recently gained a new powerful tool from the analysis of densely spaced single nucleotide polymorphisms (SNPs) across the whole genome. In this study, almost 250 000 such polymorphisms were used to analyze genetic differences between the Germans, British, Eastern and Western Finns and Swedes.

The Germans and British' are genetically close to each other, which also have been observed in other recently published studies. The genetic distances between the Swedes and Finns are somewhat larger. The researchers also found that the genetic difference between Eastern and Western Finland was substantial in a European scale. Even between Finnish counties there were clear differences

- The larger genetic distances in the north are caused by differences in population history. The northernmost parts of Europe were inhabited later than Central Europe and by fewer people, and have had smaller populations since then, says Päivi Lahermo, research team leader at Helsinki University.

Publication: "Genome-Wide Analysis of Single Nucleotide Polymorphisms Uncovers Population Structure in Northern Europe", Elina Salmela, Tuuli Lappalainen, Ingegerd Fransson, Peter M. Andersen, Karin Dahlman-Wright, Andreas Fiebig, Pertti Sistonen, Marja-Liisa Savontaus, Stefan Schreiber, Juha Kere, Päivi Lahermo, PLoS One, 24 oktober 2008

Further information, please contact:

Professor Juha Kere,
Department of Biosciences and Nutrition
Karolinska Institutet
Tel: +46 (0)73-4213550
E-mail: juha.kere@ki.se
Dr Päivi Lahermo
Institute for Molecular Medicine Finland
Helsinki University
Tel: +358407206315
E-mail: paivi.lahermo@helsinki.fi
Press Officer Katarina Sternudd
Karolinska Institutet
Tel: +46 (0)8-524 838 95
E-mail: katarina.sternudd@ki.se
Karolinska Institutet is one of the leading medical universities in Europe. Through research, education and information, Karolinska Institutet contributes to improving human health. Each year, the Nobel Assembly at Karolinska Institutet awards the Nobel Prize in Physiology or Medicine.

Katarina Sternudd | idw
Further information:
http://ki.se
http://dx.plos.org/10.1371/journal.pone.0003519
http://ki.se/pressimages

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>