Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic Change Extends Mouse Life, Points to Possible Treatment for ALS

11.12.2008
There are many ways to die, but amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig’s disease must be one of the worst. By the time a patient notices muscle weakness, the neurons that control the muscles have already begun dying, in an untreatable process that brings death within two to five years.

In a series of experiments reported today (Dec. 9) in the Journal of Neuroscience, a University of Wisconsin-Madison pharmacy researcher was able to prolong life and slow nerve deterioration in a mouse with a genetic form of ALS. Marcelo Vargas, a postdoctoral fellow in the laboratory of Jeff Johnson, a professor in the School of Pharmacy, tested mice that carried an extra gene that pushed support cells for the neurons into overdrive, causing them to pump out extra quantities of the antioxidant glutathione.

The gene in question, called Nrf2, has long been a research focus for Johnson, who is also an investigator at UW-Madison’s Waisman Center.

Although oxidation is a major cause of cell death in Parkinson’s disease and Alzheimer’s disease as well as ALS, antioxidant treatments have failed to slow these diseases.

But the mice with extra copies of Nrf2 produced glutathione right alongside the vulnerable neurons, and that made all the difference, says Johnson. These special mice were engineered in collaboration with Albee Messing, a professor in the UW-Madison School of Veterinary Medicine and also an investigator at the Waisman Center. “It’s extremely difficult to increase glutathione in the central nervous system,” Johnson says. “You can’t just shoot it into people or animals. But we found a 25 percent increase in the molecule in the spinal cords.”

Although the mice did eventually die of ALS, they lived longer, and the disease appeared 17 days later than in mice that lacked the extra Nrf2 gene, Johnson says. “This was a very aggressive model of ALS, so a life extension of 21 days is thought to be pretty significant, roughly equivalent to five to 10 years in human patients.“

The inserted Nrf2 gene was only active in support cells called astrocytes, which promote health among the neurons that actually carry nerve signals, Johnson explains. “We have taken this normal function of producing antioxidants and added to it. It’s like putting the astrocytes on steroids.”

Experiments performed on mouse astrocytes and nerve cells in a dish confirmed the source of the protection, Johnson adds. “We can completely reverse the toxicity of the sick astrocytes. The mutated protein that causes ALS is still there, but Nrf2 makes glutathione that completely blocks it.”

Although the mice that Johnson tested carried the inherited form of ALS, most patients do not have an inherited disease. However, Johnson says the mice are still a good testbed for ALS treatments. “The endpoints that we are blocking, including death of neurons and separation of neurons from the muscle, are seen in all forms of ALS; that’s what makes this so exciting. We are not targeting the mutant protein that causes the disease; we are targeting the astrocytes’ mechanism that preserves the neurons. The mutant protein is still in all cells of the spinal cord; we are just over-expressing the Nrf2 gene — causing it to make more glutathione — and that provides the protection.”

Nrf2 activates a system, or pathway, that is also attracting interest from researchers working on Parkinson’s disease, Alzheimer’s disease, Huntington’s disease and stroke, says Johnson. “It’s been exciting. This hypothesis came to me when I was in graduate school in 1990, and this year it seems to be coming to fruition” as a possible treatment for several neurodegenerative diseases.

The results may be promising, but inserting genes, or gene therapy, has had few successes to date. Yet by positively identifying the chemical pathway that keeps neurons healthy in ALS, Johnson is in a position to search for a drug that can enter the brain and activate the Nrf2 system. That quest is already under way at an automated screening facility at UW-Madison, where more than 50,000 molecules are being tested for their ability to activate Nrf2.

Years of research will be needed before today’s results can be translated into a treatment for patients, however. “If everything worked perfectly, we probably could have something in two to three years, but the odds of that happening are pretty low,” says Johnson. “But in five to eight years, I hope to have something can get through all the regulatory hoops.”

Finding that one mechanism is involved in several neurodegenerative diseases is significant, Johnson says, because it attracts a broader group of scientists and funders to the work. “Something seems to be going wrong with the neurons because the astrocyte does not function right. Now, it looks like we have the potential to fix the astrocyte, so it can preserve the neurons for a longer period.”

Delinda Johnson and Daniel Sirkis were also members of the UW-Madison research team. The study was funded by the Robert Packard Center for ALS Research at Johns Hopkins, the ALS Association and National Institutes of Health grants.

David Tenenbaum | Newswise Science News
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht A room with a view - or how cultural differences matter in room size perception
25.04.2017 | Max-Planck-Institut für biologische Kybernetik

nachricht Studying a catalyst for blood cancers
25.04.2017 | University of Miami Miller School of Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Early organic carbon got deep burial in mantle

25.04.2017 | Earth Sciences

A room with a view - or how cultural differences matter in room size perception

25.04.2017 | Life Sciences

Warm winds: New insight into what weakens Antarctic ice shelves

25.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>