Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic Change Extends Mouse Life, Points to Possible Treatment for ALS

11.12.2008
There are many ways to die, but amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig’s disease must be one of the worst. By the time a patient notices muscle weakness, the neurons that control the muscles have already begun dying, in an untreatable process that brings death within two to five years.

In a series of experiments reported today (Dec. 9) in the Journal of Neuroscience, a University of Wisconsin-Madison pharmacy researcher was able to prolong life and slow nerve deterioration in a mouse with a genetic form of ALS. Marcelo Vargas, a postdoctoral fellow in the laboratory of Jeff Johnson, a professor in the School of Pharmacy, tested mice that carried an extra gene that pushed support cells for the neurons into overdrive, causing them to pump out extra quantities of the antioxidant glutathione.

The gene in question, called Nrf2, has long been a research focus for Johnson, who is also an investigator at UW-Madison’s Waisman Center.

Although oxidation is a major cause of cell death in Parkinson’s disease and Alzheimer’s disease as well as ALS, antioxidant treatments have failed to slow these diseases.

But the mice with extra copies of Nrf2 produced glutathione right alongside the vulnerable neurons, and that made all the difference, says Johnson. These special mice were engineered in collaboration with Albee Messing, a professor in the UW-Madison School of Veterinary Medicine and also an investigator at the Waisman Center. “It’s extremely difficult to increase glutathione in the central nervous system,” Johnson says. “You can’t just shoot it into people or animals. But we found a 25 percent increase in the molecule in the spinal cords.”

Although the mice did eventually die of ALS, they lived longer, and the disease appeared 17 days later than in mice that lacked the extra Nrf2 gene, Johnson says. “This was a very aggressive model of ALS, so a life extension of 21 days is thought to be pretty significant, roughly equivalent to five to 10 years in human patients.“

The inserted Nrf2 gene was only active in support cells called astrocytes, which promote health among the neurons that actually carry nerve signals, Johnson explains. “We have taken this normal function of producing antioxidants and added to it. It’s like putting the astrocytes on steroids.”

Experiments performed on mouse astrocytes and nerve cells in a dish confirmed the source of the protection, Johnson adds. “We can completely reverse the toxicity of the sick astrocytes. The mutated protein that causes ALS is still there, but Nrf2 makes glutathione that completely blocks it.”

Although the mice that Johnson tested carried the inherited form of ALS, most patients do not have an inherited disease. However, Johnson says the mice are still a good testbed for ALS treatments. “The endpoints that we are blocking, including death of neurons and separation of neurons from the muscle, are seen in all forms of ALS; that’s what makes this so exciting. We are not targeting the mutant protein that causes the disease; we are targeting the astrocytes’ mechanism that preserves the neurons. The mutant protein is still in all cells of the spinal cord; we are just over-expressing the Nrf2 gene — causing it to make more glutathione — and that provides the protection.”

Nrf2 activates a system, or pathway, that is also attracting interest from researchers working on Parkinson’s disease, Alzheimer’s disease, Huntington’s disease and stroke, says Johnson. “It’s been exciting. This hypothesis came to me when I was in graduate school in 1990, and this year it seems to be coming to fruition” as a possible treatment for several neurodegenerative diseases.

The results may be promising, but inserting genes, or gene therapy, has had few successes to date. Yet by positively identifying the chemical pathway that keeps neurons healthy in ALS, Johnson is in a position to search for a drug that can enter the brain and activate the Nrf2 system. That quest is already under way at an automated screening facility at UW-Madison, where more than 50,000 molecules are being tested for their ability to activate Nrf2.

Years of research will be needed before today’s results can be translated into a treatment for patients, however. “If everything worked perfectly, we probably could have something in two to three years, but the odds of that happening are pretty low,” says Johnson. “But in five to eight years, I hope to have something can get through all the regulatory hoops.”

Finding that one mechanism is involved in several neurodegenerative diseases is significant, Johnson says, because it attracts a broader group of scientists and funders to the work. “Something seems to be going wrong with the neurons because the astrocyte does not function right. Now, it looks like we have the potential to fix the astrocyte, so it can preserve the neurons for a longer period.”

Delinda Johnson and Daniel Sirkis were also members of the UW-Madison research team. The study was funded by the Robert Packard Center for ALS Research at Johns Hopkins, the ALS Association and National Institutes of Health grants.

David Tenenbaum | Newswise Science News
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>