Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic 'fingerprint' shown to predict liver cancer's return

16.10.2008
Finding flows from enhanced genomic method for reading genes' activity in clinical specimens

Scientists have reached a critical milestone in the study of liver cancer that lays the groundwork for predicting the illness's path, whether toward cure or recurrence. By analyzing the tissue in and around liver tumors, an international research team has identified a kind of genetic "fingerprint" that can help predict if patients' cancers will return.

The findings appear in the October 15 advance online edition of the New England Journal of Medicine and were made possible by a large-scale method for revealing genes' activity, which the researchers show can be applied to tissues that have been chemically preserved instead of frozen. This technical triumph promises to unlock biological information within millions of clinical samples previously intractable to genomic study.

"In most hospitals and clinics, the prevailing method of storing patient tissue involves a chemical fixative, which often precludes future genome-scale analyses. That means the vast majority of patient samples have effectively been off-limits to a variety of important questions," said senior author Todd Golub, who directs the Cancer Program at the Broad Institute of MIT and Harvard and is the Charles A. Dana Investigator in Human Cancer Genetics at the Dana-Farber Cancer Institute. "Our work reveals that it is indeed possible to access this biological trove, a step we hope will bolster future genomic discoveries throughout the scientific community."

Unlike many cancers, hepatocellular carcinoma, a form of liver cancer, is often detected early. That is because in the developed world, doctors can identify and closely monitor individuals at highest risk — those with a history of liver damage due to infection or chronic alcohol abuse, for example. Yet even with early diagnosis and treatment, the disease often recurs. And that development often proves fatal. The ability to pinpoint in advance those most at risk of suffering recurring cases could improve treatment, perhaps helping doctors choose more aggressive therapies for patients whose disease is most likely to return and identifying patients whose health should be carefully followed.

Genome-scale technologies are a powerful means to help develop such predictors, particularly methods that measure the activity (or "expression") of every human gene. However, a major obstacle to applying such methods to hepatocellular carcinoma, as well as other cancers, has been the technical requirements — samples must be frozen, not preserved, or "fixed," in the chemical formalin.

An international team of researchers from the Broad Institute, Harvard Medical School, Dana-Farber Cancer Institute, Mount Sinai School of Medicine, and elsewhere came together to develop an enhanced method for measuring gene expression in formalin-fixed tissues and applied it to samples from more than 300 liver cancer patients. Their work uncovered a striking pattern — a characteristic signature of more than 180 active and inactive genes linked with increased patient survival. Interestingly, this putative predictor was discovered not within the tumors per se, but within the normal tissue surrounding them.

In the future, the telltale gene signature could help distinguish patients whose tumors are likely to return. "Our findings underscore the potential of genomic signatures to help identify treatments that will be most beneficial to individual patients," said Golub, who is also an investigator at the Howard Hughes Medical Institute.

The discovery flows from an existing gene expression method that works on formalin-fixed tissues yet extracts information on just a few hundred genes. The researchers redesigned the technique to analyze roughly 6,000 genes — a subset that yields sufficient data to either directly measure or infer the expression levels of nearly all ~20,000 human genes.

Although further work is needed before the liver cancer findings can be used in the clinic, the current study marks a key step toward accelerating genomic discoveries with medical promise. Indeed, most patient tissue banks, especially those with valuable clinical data such as disease severity and course that are so vital to retrospective studies, are built from fixed samples and up until now have been largely inaccessible to genomic analysis. "In the Boston-area hospitals alone, we estimate that there are more than one million archived samples that can be analyzed with this approach," said Golub. "There's a wealth of information waiting to be explored."

Nicole Davis | EurekAlert!
Further information:
http://www.broad.mit.edu

Further reports about: Broad Institute Cancer Genetic Genetic fingerprint Samples clinic genomic help liver cancer method

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>