Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genes that influence start of menstruation identified for first time

18.05.2009
Two genes clarify the genetic control of female sexual maturation, and point to regulatory mechanisms involved in human growth and development

Researchers from the Peninsula Medical School, along with collaborators from research institutions across Europe and the United States, have for the first time identified two genes that are involved in determining when girls begin menstruation. The work will be published in Nature Genetics this weekend.

The findings of the study could have ramifications for normal human growth and weight too, because early-age menstruation is also associated with shorter stature and increased body weight. In general, girls who achieve menstruation earlier in life tend to have greater body mass index (BMI) and a higher ratio of fat compared to those who begin menstruation later.

The study carried out an analysis of 17,510 women across eight different international population-based sources. This number included women of European descent who reported the age at which they reached menstruation of between nine and 17 years.

The two genes identified were on chromosomes nine and six. One in 20 females carry two copies of each of the gene variations which result in menstruation starting earlier, and they will start menstruating approximately four and half months earlier than those with no copies of the gene variants.

Dr Anna Murray from the Peninsula Medical School, commented: "This study provides the first evidence that common genetic variants influence the time at which women reach sexual maturation. Our findings also indicate a genetic basis for the associations between early menstruation and both height and BMI."

She added: "The study takes us nearer to understanding the biology of the processes involved in puberty and early growth and to understand what constitutes 'normal' in growth and development."

Fellow author John Perry, also from the Peninsula Medical School, added: "Understanding the biological mechanisms behind reproductive lifespan may also help inform us about associated diseases that affect a lot of women as they get older, including diabetes, heart disease and breast cancer."

Andrew Gould | EurekAlert!
Further information:
http://www.pms.ac.uk

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>