Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genes that influence start of menstruation identified for first time

18.05.2009
Two genes clarify the genetic control of female sexual maturation, and point to regulatory mechanisms involved in human growth and development

Researchers from the Peninsula Medical School, along with collaborators from research institutions across Europe and the United States, have for the first time identified two genes that are involved in determining when girls begin menstruation. The work will be published in Nature Genetics this weekend.

The findings of the study could have ramifications for normal human growth and weight too, because early-age menstruation is also associated with shorter stature and increased body weight. In general, girls who achieve menstruation earlier in life tend to have greater body mass index (BMI) and a higher ratio of fat compared to those who begin menstruation later.

The study carried out an analysis of 17,510 women across eight different international population-based sources. This number included women of European descent who reported the age at which they reached menstruation of between nine and 17 years.

The two genes identified were on chromosomes nine and six. One in 20 females carry two copies of each of the gene variations which result in menstruation starting earlier, and they will start menstruating approximately four and half months earlier than those with no copies of the gene variants.

Dr Anna Murray from the Peninsula Medical School, commented: "This study provides the first evidence that common genetic variants influence the time at which women reach sexual maturation. Our findings also indicate a genetic basis for the associations between early menstruation and both height and BMI."

She added: "The study takes us nearer to understanding the biology of the processes involved in puberty and early growth and to understand what constitutes 'normal' in growth and development."

Fellow author John Perry, also from the Peninsula Medical School, added: "Understanding the biological mechanisms behind reproductive lifespan may also help inform us about associated diseases that affect a lot of women as they get older, including diabetes, heart disease and breast cancer."

Andrew Gould | EurekAlert!
Further information:
http://www.pms.ac.uk

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>