Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genes associated with aggressive breast cancer

16.08.2010
Researchers at the University of Gothenburg, Sweden, have for the first time identified 12 genes that could be associated with aggressive breast tumours. The discovery could result in more reliable prognoses and better treatment strategies for patients.

The results, published in the journal Clinical Cancer Research, are based on analyses of breast tumours from 97 female breast cancer patients. Half of these patients died within eight years of diagnosis, while the remainder survived for more than eight years.

Breast tumours consist of a heterogeneous mix of tumour cells which are markedly different in terms of their genes (DNA) and biological properties. The researchers used microarray techniques to study the overall picture of the tumours by measuring the amount of DNA and gene products (RNA) in each tumour. This enabled them to investigate the relationship between genetic changes and clinical parameters such as tumour properties and response to treatment.

“We’ve managed to identify 12 genes whose expression is associated with an aggressive form of breast cancer,” says Toshima Parris, a PhD student at the Department of Oncology. “These 12 genes were much more prominent in patients who died within eight years than in those who survived.”

Three of these 12 gene products were represented in much higher levels in aggressive breast tumours than in less aggressive tumours, whereas the nine remaining genes were found in lower levels in aggressive tumours.

These findings suggest that the activity of these genes could have an effect on tumour progression by impacting cell growth, motility and development. According to Parris, it may one day be possible to test for these markers in blood samples containing circulating tumour cells and/or tumour tissue from breast cancer patients in order to ascertain whether the patient may benefit from a particular treatment or drug to counteract this change in the genes’ activity.

“We hope that diagnostics focusing on these genes at an early stage will result in more reliable prognoses, which could lead to more effective treatment regimens for patients with aggressive tumours,” says Parris.

BREAST CANCER
Around 7,000 people in Sweden develop breast cancer each year, and it is the most common form of cancer in Swedish women. Breast cancer can be caused by, among other factors, hormonal and hereditary factors. It affects mainly elderly women and is uncommon among younger women. Treatments include surgery, radiotherapy, hormone therapy and chemotherapy. More and more breast cancer patients in Sweden are managing to defeat the disease, and almost three-quarters now survive.
For more information, please contact:
Toshima Parris, PhD student, Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, tel. +46 31 342 78 55, e-mail: toshima.parris@oncology.gu.se
Project manager:
Associate Professor Khalil Helou, tel. +46 31 342 84 43, e-mail: khalil.helou@oncology.gu.se
Journal: Clinical Cancer Research, CCR-10-0889
Title of the article: Clinical implications of gene dosage and gene expression patterns in diploid breast carcinoma

Authors: Toshima Z. Parris, Anna Danielsson, Szilárd Nemes, Anikó Kovács, Ulla Delle, Ghita Fallenius, Elin Möllerström, Per Karlsson, Khalil Helou

Helena Aaberg | idw
Further information:
http://clincancerres.aacrjournals.org/content/16/15/3860.abstract -
http://www.gu.se

Further reports about: DNA Oncology blood sample breast cancer cancer patients genes tumour cells

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>