Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genes associated with aggressive breast cancer

16.08.2010
Researchers at the University of Gothenburg, Sweden, have for the first time identified 12 genes that could be associated with aggressive breast tumours. The discovery could result in more reliable prognoses and better treatment strategies for patients.

The results, published in the journal Clinical Cancer Research, are based on analyses of breast tumours from 97 female breast cancer patients. Half of these patients died within eight years of diagnosis, while the remainder survived for more than eight years.

Breast tumours consist of a heterogeneous mix of tumour cells which are markedly different in terms of their genes (DNA) and biological properties. The researchers used microarray techniques to study the overall picture of the tumours by measuring the amount of DNA and gene products (RNA) in each tumour. This enabled them to investigate the relationship between genetic changes and clinical parameters such as tumour properties and response to treatment.

“We’ve managed to identify 12 genes whose expression is associated with an aggressive form of breast cancer,” says Toshima Parris, a PhD student at the Department of Oncology. “These 12 genes were much more prominent in patients who died within eight years than in those who survived.”

Three of these 12 gene products were represented in much higher levels in aggressive breast tumours than in less aggressive tumours, whereas the nine remaining genes were found in lower levels in aggressive tumours.

These findings suggest that the activity of these genes could have an effect on tumour progression by impacting cell growth, motility and development. According to Parris, it may one day be possible to test for these markers in blood samples containing circulating tumour cells and/or tumour tissue from breast cancer patients in order to ascertain whether the patient may benefit from a particular treatment or drug to counteract this change in the genes’ activity.

“We hope that diagnostics focusing on these genes at an early stage will result in more reliable prognoses, which could lead to more effective treatment regimens for patients with aggressive tumours,” says Parris.

BREAST CANCER
Around 7,000 people in Sweden develop breast cancer each year, and it is the most common form of cancer in Swedish women. Breast cancer can be caused by, among other factors, hormonal and hereditary factors. It affects mainly elderly women and is uncommon among younger women. Treatments include surgery, radiotherapy, hormone therapy and chemotherapy. More and more breast cancer patients in Sweden are managing to defeat the disease, and almost three-quarters now survive.
For more information, please contact:
Toshima Parris, PhD student, Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, tel. +46 31 342 78 55, e-mail: toshima.parris@oncology.gu.se
Project manager:
Associate Professor Khalil Helou, tel. +46 31 342 84 43, e-mail: khalil.helou@oncology.gu.se
Journal: Clinical Cancer Research, CCR-10-0889
Title of the article: Clinical implications of gene dosage and gene expression patterns in diploid breast carcinoma

Authors: Toshima Z. Parris, Anna Danielsson, Szilárd Nemes, Anikó Kovács, Ulla Delle, Ghita Fallenius, Elin Möllerström, Per Karlsson, Khalil Helou

Helena Aaberg | idw
Further information:
http://clincancerres.aacrjournals.org/content/16/15/3860.abstract -
http://www.gu.se

Further reports about: DNA Oncology blood sample breast cancer cancer patients genes tumour cells

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>