Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genes associated with aggressive breast cancer

16.08.2010
Researchers at the University of Gothenburg, Sweden, have for the first time identified 12 genes that could be associated with aggressive breast tumours. The discovery could result in more reliable prognoses and better treatment strategies for patients.

The results, published in the journal Clinical Cancer Research, are based on analyses of breast tumours from 97 female breast cancer patients. Half of these patients died within eight years of diagnosis, while the remainder survived for more than eight years.

Breast tumours consist of a heterogeneous mix of tumour cells which are markedly different in terms of their genes (DNA) and biological properties. The researchers used microarray techniques to study the overall picture of the tumours by measuring the amount of DNA and gene products (RNA) in each tumour. This enabled them to investigate the relationship between genetic changes and clinical parameters such as tumour properties and response to treatment.

“We’ve managed to identify 12 genes whose expression is associated with an aggressive form of breast cancer,” says Toshima Parris, a PhD student at the Department of Oncology. “These 12 genes were much more prominent in patients who died within eight years than in those who survived.”

Three of these 12 gene products were represented in much higher levels in aggressive breast tumours than in less aggressive tumours, whereas the nine remaining genes were found in lower levels in aggressive tumours.

These findings suggest that the activity of these genes could have an effect on tumour progression by impacting cell growth, motility and development. According to Parris, it may one day be possible to test for these markers in blood samples containing circulating tumour cells and/or tumour tissue from breast cancer patients in order to ascertain whether the patient may benefit from a particular treatment or drug to counteract this change in the genes’ activity.

“We hope that diagnostics focusing on these genes at an early stage will result in more reliable prognoses, which could lead to more effective treatment regimens for patients with aggressive tumours,” says Parris.

BREAST CANCER
Around 7,000 people in Sweden develop breast cancer each year, and it is the most common form of cancer in Swedish women. Breast cancer can be caused by, among other factors, hormonal and hereditary factors. It affects mainly elderly women and is uncommon among younger women. Treatments include surgery, radiotherapy, hormone therapy and chemotherapy. More and more breast cancer patients in Sweden are managing to defeat the disease, and almost three-quarters now survive.
For more information, please contact:
Toshima Parris, PhD student, Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, tel. +46 31 342 78 55, e-mail: toshima.parris@oncology.gu.se
Project manager:
Associate Professor Khalil Helou, tel. +46 31 342 84 43, e-mail: khalil.helou@oncology.gu.se
Journal: Clinical Cancer Research, CCR-10-0889
Title of the article: Clinical implications of gene dosage and gene expression patterns in diploid breast carcinoma

Authors: Toshima Z. Parris, Anna Danielsson, Szilárd Nemes, Anikó Kovács, Ulla Delle, Ghita Fallenius, Elin Möllerström, Per Karlsson, Khalil Helou

Helena Aaberg | idw
Further information:
http://clincancerres.aacrjournals.org/content/16/15/3860.abstract -
http://www.gu.se

Further reports about: DNA Oncology blood sample breast cancer cancer patients genes tumour cells

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>