Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Genes associated with aggressive breast cancer

Researchers at the University of Gothenburg, Sweden, have for the first time identified 12 genes that could be associated with aggressive breast tumours. The discovery could result in more reliable prognoses and better treatment strategies for patients.

The results, published in the journal Clinical Cancer Research, are based on analyses of breast tumours from 97 female breast cancer patients. Half of these patients died within eight years of diagnosis, while the remainder survived for more than eight years.

Breast tumours consist of a heterogeneous mix of tumour cells which are markedly different in terms of their genes (DNA) and biological properties. The researchers used microarray techniques to study the overall picture of the tumours by measuring the amount of DNA and gene products (RNA) in each tumour. This enabled them to investigate the relationship between genetic changes and clinical parameters such as tumour properties and response to treatment.

“We’ve managed to identify 12 genes whose expression is associated with an aggressive form of breast cancer,” says Toshima Parris, a PhD student at the Department of Oncology. “These 12 genes were much more prominent in patients who died within eight years than in those who survived.”

Three of these 12 gene products were represented in much higher levels in aggressive breast tumours than in less aggressive tumours, whereas the nine remaining genes were found in lower levels in aggressive tumours.

These findings suggest that the activity of these genes could have an effect on tumour progression by impacting cell growth, motility and development. According to Parris, it may one day be possible to test for these markers in blood samples containing circulating tumour cells and/or tumour tissue from breast cancer patients in order to ascertain whether the patient may benefit from a particular treatment or drug to counteract this change in the genes’ activity.

“We hope that diagnostics focusing on these genes at an early stage will result in more reliable prognoses, which could lead to more effective treatment regimens for patients with aggressive tumours,” says Parris.

Around 7,000 people in Sweden develop breast cancer each year, and it is the most common form of cancer in Swedish women. Breast cancer can be caused by, among other factors, hormonal and hereditary factors. It affects mainly elderly women and is uncommon among younger women. Treatments include surgery, radiotherapy, hormone therapy and chemotherapy. More and more breast cancer patients in Sweden are managing to defeat the disease, and almost three-quarters now survive.
For more information, please contact:
Toshima Parris, PhD student, Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, tel. +46 31 342 78 55, e-mail:
Project manager:
Associate Professor Khalil Helou, tel. +46 31 342 84 43, e-mail:
Journal: Clinical Cancer Research, CCR-10-0889
Title of the article: Clinical implications of gene dosage and gene expression patterns in diploid breast carcinoma

Authors: Toshima Z. Parris, Anna Danielsson, Szilárd Nemes, Anikó Kovács, Ulla Delle, Ghita Fallenius, Elin Möllerström, Per Karlsson, Khalil Helou

Helena Aaberg | idw
Further information: -

Further reports about: DNA Oncology blood sample breast cancer cancer patients genes tumour cells

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>