Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene variations can be barometer of behavior, choices

22.07.2009
Michael Frank, of the Brown Institute for Brain Science, has determined that variations of three different genes in the brain can predict whether individuals will make certain choices. His work, in collaboration with colleagues at the University of Arizona, will be published in the August 2009 edition of Nature Neuroscience.

Researchers at Brown University and the University of Arizona have determined that variations of three different genes in the brain (called single-nucleotide polymorphisms) may help predict a person’s tendency to make certain choices.

By testing DNA samples from saliva in conjunction with computerized cognitive tests, researchers found that the certain gene variations could be connected to certain choices — focusing on decisions that previously produced good outcomes, avoiding negative outcomes, or trying unfamiliar things even though an outcome is uncertain.

“In some cases, single genes can have surprisingly strong influences on particular aspects of behavior,” said Michael J. Frank, assistant professor of cognitive and linguistic science, psychology, and psychiatry and human behavior. Frank, lead author of the research, directs the Laboratory for Neural Computation and Cognition in the Brown Institute for Brain Science.

Frank worked with Brown graduate student Bradley Doll and collaborated with geneticists Francisco Moreno and Jen Oas-Terpstra of the University of Arizona. Research findings will be published in the August 2009 Nature Neuroscience and will be available online July 20. The paper builds on research Frank conducted while he was at the University of Arizona.

The study examined the effects of three genes that control aspects of dopamine function in the brain while participants performed a computerized decision-making task. Dopamine is a neurotransmitter that helps keep the central nervous symptom functioning. Its levels fluctuate as the brain feels motivated or rewarded.

Varations in two of the genes — DARPP-32 and DRD2 — independently predicted the degree to which people responded to outcomes that were better or worse than expected, by reinforcing approach and avoidance type behaviors. These genes affect dopamine processes in the basal ganglia portion of the brain. Frank said this is important for “simple reinforcement of learning processes that you might not even be aware of.”

Frank and the other researchers also studied exploratory decision-making — the choices people make when they are in “uncharted territory.” They found that variations in a third gene — COMT — predicted the extent to which people explored decisions when they were uncertain whether the decisions might produce better outcomes.

COMT affects dopamine levels in the prefrontal cortex, known as an executive center of the brain. Frank said this level might be needed to “prevent the more basic motivational learning system from always taking control over behavior, so as to gather more information and prevent getting stuck in a rut.”

Frank said the findings could have some interesting implications. “We cannot say on the basis of one or two studies,” he said, “but if a student isn’t doing well in a particular learning environment, [a gene study could show that the student] may be well-suited to a particular teaching style.”

The data could help shape future treatments for conditions such as Parkinson’s disease, which involves dopamine loss. Treatment options now lead to unwanted side effects.

“Medications that increase dopamine stimulation can help treat debilitating aspects of the disease but in some patients the meds can induce pathological gambling and impulsivity,” he said.

Frank suggested that genetic factors involved in influencing motivational processes in the brain could someday help predict which patients would be negatively impacted by particular medications.

Seventy-three college students, with a median age of 19, took part in the study.

Scientists took saliva samples, from which they extracted DNA and analyzed the genes with subsequent computerized cognitive tests. Subjects watched a clock face, on which the arrow revolved around for five seconds, during which the subjects were to press a button once to try to win points. The subjects did not know that the statistics of their reward depended on their response time, and they had to learn to adjust their responses to increase the number of points they could win.

That data was then fed into a biologically based computer model that quantified the learning and exploration processes on a trial-by-trial basis. These variables were then compared against different genes.

A grant from the U.S. National Institutes of Mental Health funded the research.

Mark Hollmer | EurekAlert!
Further information:
http://www.brown.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>