Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene variation makes alcoholism less likely in some survivors of sexual abuse

03.02.2010
Exposure to severe stress early in life increases the risk of alcohol and drug addiction. Yet surprisingly, some adults sexually abused as children — and therefore at high risk for alcohol problems — carry gene variants that protect them from heavy drinking and its effects, according to researchers at Washington University School of Medicine in St. Louis.

The researchers, from the university’s Midwest Alcoholism Research Center, say the finding could aid the development of therapies for alcohol dependence by offering suggestions for targeted treatments based on genetic traits and history of exposure to severe stressors.

Scientists estimate that about half the risk for alcoholism is encoded in a person’s genes. The rest comes from environmental factors, such as age at first drink and exposure to extreme stress. Other research has suggested that when the environmental risk factors occur during key periods of brain development, genes and environment working together can increase the likelihood an individual will become alcohol dependent. Child sexual abuse is one of the environmental stressors that can interact with genes to significantly increase the risk for alcohol problems.

But the researchers report in the January issue of Addiction Biology that people with a particular pattern of genetic markers seem to be protected against alcohol problems, even if they were sexually abused as children.

Those who were protected carry a set of genetic variations that scientists call the H2 haplotype. Similar to a blood type, a haplotype is more than just a single genetic mutation. It is a normally occurring pattern of gene variants that are statistically associated with one another so that when scientists find a few genetic markers, they can successfully predict what other genetic variations will occur within a particular region of DNA.

“We looked at how genes and environment interact,” says Elliot C. Nelson, M.D., lead author of the study. “Our analysis included both sexual abuse and information about the DNA region that carries the H2 haplotype. People who carry that genetic pattern were protected against the risks for alcohol consumption and alcohol dependence typically associated with sexual abuse.”

Other sexual abuse victims in the study had the alternate genetic pattern known as the H1 haplotype. Those individuals had three times the risk of heavy drinking and alcohol dependence as those who had not been sexually abused.

“They drank much more alcohol and had a significantly greater risk for problems,” says Nelson, an associate professor of psychiatry. “But abuse victims with the H2 haplotype seemed to be completely protected against those risks.”

Nelson’s team studied data from more than 1,100 people in 476 Australian families who participated in the Nicotine Addiction Genetics project. Originally, that study was set up to learn about nicotine addiction, but investigators also looked at related problems, including how much alcohol people drank and whether they met the diagnostic criteria for alcohol dependence.

Study subjects also were asked about sexual abuse in childhood. A total of 121 women and 35 men reported a history of sexual abuse beginning at around age 11. Nelson’s group also had access to DNA samples from those evaluated in this study.

By identifying a handful of specific sites in the genome, it’s possible to classify a person as having either the H1 or the H2 haplotype. One of the genes in the DNA region included in H1 and H2 is called corticotropin releasing hormone receptor type 1 (CRHR1). Nelson’s group is focusing on that gene, which research in animals has implicated in risk for alcohol dependence.

Many past studies have focused on genes related to alcohol metabolism, but CRHR1 is not a metabolism gene. Nelson says it appears from animal studies, however, that the gene may be involved in risks associated with the effects of environmental stress. In the case of humans, he suspects variants of the gene may play a role in protecting against stresses caused by child sexual abuse.

“There are many different ways an individual can become alcoholic, some involving heavy genetic risks, some involving specific environmental factors, such as exposure to peers who drink heavily,” Nelson says. “This particular pathway involving CRHR1 is interesting because it seems to play an extremely important role in animal models of alcohol consumption and dependence.”

He says better understanding of how the gene works may help scientists understand the process by which people become alcoholics. As they attempt to clarify the possible role of the CRHR1 gene in protecting sexual abuse survivors from alcohol dependence, Nelson says it may be interesting to look at other severe environmental stressors that trigger alcohol use to see whether people with the H2 variation also are protected from those forms of risk.

In addition, he says drugs have been developed that block CRHR1 receptors. If it turns out that humans are responding to the same stressors and reacting via the same genetic pathway that animals do, Nelson says some of those drugs may be able to help people who are alcoholic using the same pathway that protects people with the H2 haplotype.

A panel of leading alcoholism researchers will discuss important findings from translational and other genetic research and their implications for treatment at Washington University School of Medicine during the 10th annual Guze Symposium on Alcoholism. The topic of the Feb. 18 meeting is Disentangling the Genetics of Alcoholism: Understanding Pathophysiology and Improving Treatment.

Nelson EC, Agrawal A, Pergadia ML, Wang JC, Whitfield JB, Saccone FS, Kern J, Grant JD, Schrage AJ, Rice JP, Montgomery GW, Heath AC, Goate AM, Martin NG, Madden PAF. H2 haplotype at chromosome 17q21.31 protects against childhood sexual abuse-associated risk for alcohol consumption and dependence. Addiction Biology, vol. 15 (1); pp. 1-11, Jan. 2010

doi:10.1111/j.1369-1600.2009.00181.x

This study was supported by the National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism of the National Institutes of Health, the ABMRF/Foundation for Alcohol Research and the Australian NHMRC Fellowship Scheme.

Study authors Goate, Rice, Saccone and Wang are listed as inventors on a patent held by Perlegen Sciences Inc., covering the use of certain single nucleotide polymorphisms (SNPs) in determining the diagnosis, prognosis and treatment of addiction.

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked third in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Diane Duke Williams | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>