Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New gene variants associated with glucose, insulin levels, some with diabetes risk

19.01.2010
Study findings provide additional information on glucose regulation, potential therapeutic targets

A major international study with leadership from Massachusetts General Hospital (MGH) researchers has identified 10 new gene variants associated with blood sugar or insulin levels. Two of these novel variants and three that earlier studies associated with glucose levels were also found to increase the risk of type 2 diabetes. Along with a related study from members of the same research consortium, associating additional genetic variants with the metabolic response to a sugary meal, the report will appear in Nature Genetics and has been released online.

"Only four gene variants had previously been associated with glucose metabolism, and just one of them was known to affect type 2 diabetes. With more genes identified, we can see patterns emerge," says Jose Florez, MD, PhD, of the MGH Diabetes Unit and the Center for Human Genetic Research, co-lead author of the report. "Finding these new pathways can help us better undertand how glucose is regulated, distinguish between normal and pathological glucose variations and develop potential new therapies for type 2 diabetes."

Both studies were conducted by the Meta-Analyses of Glucose and Insulin-related Traits Consortium (MAGIC), a collaboration among researchers from centers in the U.S., Canada, Europe and Australia that analyzed gene samples from 54 previous studies involving more than 122,000 individuals of European descent. The study co-led by MGH scientists – along with colleagues from Boston University, University of Cambridge, University of Oxford and the University of Michigan – began by analyzing about 2.5 million gene variations (called SNPs) from 21 genome-wide searches for variants associated with glucose and insulin regulation in more than 46,000 nondiabetic participants. The 25 most promising SNPs from the first phase were then tested in more than 76,000 nondiabetic participants in 33 other studies, leading to new associations of nine SNPs with fasting glucose levels and one with fasting insulin and with a measure of insulin resistance.

Analysis of genetic data from additional studies involving both diabetic and nondiabetic participants found that five glucose-level-associated variants – two of those newly identified and three discovered in previous studies – were also shown to raise type 2 diabetes risk. Most of the diabetes-associated variants appear to act through their impact on insulin secretion by the pancreatic beta cells and not by insulin resistance, which suggests, the authors note, that environmental factors such as diet, lifestyle and obesity may play a larger role in insulin resistance than in insulin secretion.

"The fact that not all genes involved with raising glucose levels increase diabetes risk tells us that it's not the mere fact of raising glucose that's important but rather how glucose is raised. It's one thing to increase glucose slightly within the normal range and quite another to affect a pathway that eventually leads to progressive glucose elevation, beta-cell failure or insulin resistance – in other words type 2 diabetes, " says Florez, who is an assistant professor of Medicine at Harvard Medical School. "We've still only identified about 10 percent of the genetic contribution to glucose levels in nondiabetic individuals, so we need to investigate the impact of other, possibly more complex or rare forms of gene variation, along with the role of gene-environment interactions, in causing type 2 diabetes. Performing similar studies in non-European populations will also be essential."

Inês Barroso, PhD, of the Wellcome Trust Sanger Institute, Cambridge, England, is the co-lead author of the Nature Genetics report; and additional corresponding authors are Mark McCarthy, MD, University of Oxford, and Michael Boehnke, PhD, University of Michigan. Equally contributing first authors are Josée Dupuis, PhD, Boston University; Claudia Langenberg, PhD, University of Cambridge; Inga Prokopenko, PhD, University of Oxford; Richa Saxena, PhD, MGH; and Nicole Soranzo, PhD, Wellcome Trust Sanger Institute. The current study and many of the earlier studies were largely supported by grants from the National Institutes of Health.

Massachusetts General Hospital, established in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $600 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, systems biology, transplantation biology and photomedicine.

Sue McGreevey | EurekAlert!
Further information:
http://www.massgeneral.org

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>