Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New gene variant may explain psychotic features in bipolar disorder

05.03.2013
Researchers at Karolinska Institutet in Sweden have found an explanation for why the level of kynurenic acid (KYNA) is higher in the brains of people with schizophrenia or bipolar disease with psychosis.

The study, which is published in the scientific periodical Molecular Psychiatry, identifies a gene variant associated with an increased production of KYNA. The discovery contributes to the further understanding of the link between inflammation and psychosis – and might pave the way for improved therapies.

Kynurenic acid (KYNA) is a substance that affects several signalling pathways in the brain and that is integral to cognitive function. Earlier studies of cerebrospinal fluid have shown that levels of KYNA are elevated in the brains of patients with schizophrenia or bipolar diseases with psychotic features. The reason for this has, however, not been fully understood.

KMO is an enzyme involved in the production of KYNA, and the Karolinska Institutet team has now shown that some individuals have a particular genetic variant of KMO that affects its quantity, resulting in higher levels of KYNA. The study also shows that patients with bipolar disease who carry this gene variant had almost twice the chance of developing psychotic episodes.

KYNA is produced in inflammation, such as when the body is exposed to stress and infection. It is also known that stress and infection may trigger psychotic episodes. The present study provides a likely description of this process, which is more likely to occur in those individuals with the gene variant related to higher production of KYNA. The researchers also believe that the discovery can help explain certain features of schizophrenia or development of other psychotic conditions.

"Psychosis related to bipolar disease has a very high degree of heredity, up to 80 per cent, but we don't know which genes and which mechanisms are involved," says Martin Schalling, Professor of medical genetics at Karolinska Institutet's Department of Molecular Medicine and Surgery, also affiliated to the Center for Molecular Medicine (CMM). "This is where our study comes in, with a new explanation that can be linked to signal systems activated by inflammation. This has consequences for diagnostics, and paves the way for new therapies, since there is a large arsenal of already approved drugs that modulate inflammation."

The study was financed with grants from Karolinska Institutet, the Swedish Research Council, the Söderström-Königska Foundation, the Royal Physiographic Society, the Fredrik and Ingrid Thuring Foundation, the Åhlén Foundation, the Department of Clinical Psychiatry at Huddinge University Hospital, the William Lion Penzner Foundation and the US government.

Publication: 'The KMO allele encoding Arg452 is associated with psychotic features in bipolar disorder type 1, and with increased CSF KYNA level and KMO expression', Catharina Lavebratt, Sara Olsson, Lena Backlund, Louise Frisén, Carl Sellgren, Lutz Priebe, Pernilla Nikamo, Lil Träskman-Bendz, Sven Cichon, Marquis P. Vawter, Urban Ösby, Göran Engberg, Mikael Landén, Sophie Erhardt, and Martin Schalling, Molecular Psychiatry, online first 5 March 2013. Embargoed until Tuesday 5 March at 9 am UK time / 10 am CET / 4 am US ET.

For further information about the study, please contact:

Dr. Catharina Lavebratt, Associate Professor
Department of Molecular Medicine and Surgery, Karolinska Institutet
Tel: 46-08-5177 6524.
Email: catharina.lavebratt@ki.se
Dr. Martin Schalling, Professor
Department of Molecular Medicine and Surgery, Karolinska Institutet
Tel: 46-070-4841230
Email: martin.schalling@ki.se
Contact the Press Office: ki.se/pressroom
Karolinska Institutet – a medical university: ki.se/English

Press Office | EurekAlert!
Further information:
http://www.ki.se

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

Shape matters when light meets atom

05.12.2016 | Physics and Astronomy

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>