Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene therapy: Editing out genetic damage

01.02.2013
New design guidelines from researchers in Singapore simplify the development of targeted therapies for muscular dystrophy and other diseases
The dystrophin protein offers critical support to muscle fibers. Mutations affecting dystrophin’s expression cause the muscle-wasting disease muscular dystrophy. In Duchenne muscular dystrophy (DMD), these mutations take the form of small sequence changes that make much of the dystrophin gene (DMD) untranslatable, yielding nonfunctional protein or no protein at all.

Therapies based on a strategy known as ‘exon skipping’ could undo the damage from these mutations. Development of such treatments is set to accelerate, thanks to research by a team led by Keng Boon Wee of the A*STAR Institute of High Performance Computing and Zacharias Pramono of the National Skin Centre in Singapore1.

Proteins are translated from messenger RNA transcripts of genes; however, only certain RNA regions - known as exons - actually encode protein, and these are enzymatically spliced together prior to translation. Several clinical studies have demonstrated that small ‘antisense oligonucleotide’ (AON) molecules that bind mutated DMD exons can induce elimination of those defective exons during splicing, yielding shorter but largely functional versions of dystrophin. “We are cautiously optimistic that AON-induced exon skipping could be the first effective therapy for DMD patients,” says Wee.

Unfortunately, DMD arises from many different mutations, and targeted AON design remains a time-consuming, trial-and-error process. To address this challenge, Wee and Pramono sought to define the characteristics of AONs that efficiently promote exon-skipping. They used computational analysis to zoom in on exonic sequences that coordinate splicing. They also identified regions of suitable length within dystrophin RNA transcripts that span these sequences and would be accessible to AONs in living cells.

The researchers thus derived a set of guidelines enabling them to effectively design AONs that targeted nine different exons affected in DMD patients. For each exon, at least one AON proved capable of boosting dystrophin expression to clinically relevant thresholds in cultured muscle cells (see image). “Our proposed set of factors resulted in a reasonable success rate of designing efficient AONs - 61% versus 38% using semi-empirical methods,” says Wee. Clinical studies have already demonstrated the promise of efficient exon skipping in treating DMD patients.

Wee notes that other diseases arising from abnormal RNA processing could also benefit from this approach. However, his team is also exploring this method as a general strategy to abort production of disease-causing proteins in cancer and other conditions. “In contrast to small-molecule inhibitor drugs that can target only about 10% of the human genome, this approach could downregulate most human genes,” Wee says.

The A*STAR-affiliated researchers contributing to this research are from the Institute of High Performance Computing
Associated links
http://www.research.a-star.edu.sg/research/6621
Journal information
Pramono, Z. A. D., Wee, K. B., Wang, J. L., Chen, Y. J., Xiong, Q. B. et al. A prospective study in the rational design of efficient antisense oligonucleotides for exon skipping in the DMD gene. Human Gene Therapy 23, 781–790 (2012).

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6621
http://www.researchsea.com

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>