Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene therapy: Editing out genetic damage

01.02.2013
New design guidelines from researchers in Singapore simplify the development of targeted therapies for muscular dystrophy and other diseases
The dystrophin protein offers critical support to muscle fibers. Mutations affecting dystrophin’s expression cause the muscle-wasting disease muscular dystrophy. In Duchenne muscular dystrophy (DMD), these mutations take the form of small sequence changes that make much of the dystrophin gene (DMD) untranslatable, yielding nonfunctional protein or no protein at all.

Therapies based on a strategy known as ‘exon skipping’ could undo the damage from these mutations. Development of such treatments is set to accelerate, thanks to research by a team led by Keng Boon Wee of the A*STAR Institute of High Performance Computing and Zacharias Pramono of the National Skin Centre in Singapore1.

Proteins are translated from messenger RNA transcripts of genes; however, only certain RNA regions - known as exons - actually encode protein, and these are enzymatically spliced together prior to translation. Several clinical studies have demonstrated that small ‘antisense oligonucleotide’ (AON) molecules that bind mutated DMD exons can induce elimination of those defective exons during splicing, yielding shorter but largely functional versions of dystrophin. “We are cautiously optimistic that AON-induced exon skipping could be the first effective therapy for DMD patients,” says Wee.

Unfortunately, DMD arises from many different mutations, and targeted AON design remains a time-consuming, trial-and-error process. To address this challenge, Wee and Pramono sought to define the characteristics of AONs that efficiently promote exon-skipping. They used computational analysis to zoom in on exonic sequences that coordinate splicing. They also identified regions of suitable length within dystrophin RNA transcripts that span these sequences and would be accessible to AONs in living cells.

The researchers thus derived a set of guidelines enabling them to effectively design AONs that targeted nine different exons affected in DMD patients. For each exon, at least one AON proved capable of boosting dystrophin expression to clinically relevant thresholds in cultured muscle cells (see image). “Our proposed set of factors resulted in a reasonable success rate of designing efficient AONs - 61% versus 38% using semi-empirical methods,” says Wee. Clinical studies have already demonstrated the promise of efficient exon skipping in treating DMD patients.

Wee notes that other diseases arising from abnormal RNA processing could also benefit from this approach. However, his team is also exploring this method as a general strategy to abort production of disease-causing proteins in cancer and other conditions. “In contrast to small-molecule inhibitor drugs that can target only about 10% of the human genome, this approach could downregulate most human genes,” Wee says.

The A*STAR-affiliated researchers contributing to this research are from the Institute of High Performance Computing
Associated links
http://www.research.a-star.edu.sg/research/6621
Journal information
Pramono, Z. A. D., Wee, K. B., Wang, J. L., Chen, Y. J., Xiong, Q. B. et al. A prospective study in the rational design of efficient antisense oligonucleotides for exon skipping in the DMD gene. Human Gene Therapy 23, 781–790 (2012).

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6621
http://www.researchsea.com

More articles from Life Sciences:

nachricht Even plants can be stressed
03.09.2015 | Max-Planck-Institut für Molekulare Pflanzenphysiologie

nachricht Research team from Münster develops innovative catalytic chemistry process
03.09.2015 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer ISE Develops Highly Compact Inverter for Uninterruptible Power Supplies

Silicon Carbide Components Enable Efficiency of 98.7 percent

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE have developed a highly compact and efficient inverter for use in uninterruptible power...

Im Focus: How wind sculpted Earth's largest dust deposit

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from University of Arizona geoscientists. The study is the first to explain how the steep-fronted plateau formed.

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from...

Im Focus: An engineered surface unsticks sticky water droplets

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets still stick to them. Now, Penn State researchers have developed nano/micro-textured, highly slippery surfaces able to outperform these naturally inspired coatings, particularly when the water is a vapor or tiny droplets.

Enhancing the mobility of liquid droplets on rough surfaces could improve condensation heat transfer for power-plant heat exchangers, create more efficient...

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Together - Work - Experience

03.09.2015 | Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

 
Latest News

Lighter with Laser Welding

03.09.2015 | Process Engineering

For 2-D boron, it's all about that base

03.09.2015 | Materials Sciences

Phagraphene, a 'relative' of graphene, discovered

03.09.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>