Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene scan finds link across array of childhood brain disorders

23.08.2010
Mutations in a single gene can cause several types of developmental brain abnormalities that experts have traditionally considered different disorders. With support from the National Institutes of Health, researchers found those mutations through whole exome sequencing – a new gene scanning technology that cuts the cost and time of searching for rare mutations.

"This is going to change the way we approach single-gene disorders," said lead investigator Murat Gunel, M.D., who is chief of the Neurovascular Surgery Program and co-director of the Program on Neurogenetics at Yale University in New Haven, Conn. Whole exome sequencing can be applied to dozens of other rare genetic disorders where the culprit genes have so far evaded discovery, he said.

Such information can help couples assess the risk of passing on genetic disorders to their children. It can also offer insights into disease mechanisms and treatments.

The research is funded in part by a $2.9 million stimulus grant from NIH's National Institute of Neurological Disorders and Stroke (NINDS) made possible by the American Recovery and Reinvestment Act.

"This study demonstrates a powerful new tool for discovering the cause of tough-to-crack genetic disorders," said NINDS director Story Landis, Ph.D. "It also exemplifies how Recovery Act support to the NIH community is successfully driving biomedical technology and innovation."

The study appears today in Nature, and focuses on children with malformations of cortical development (MCD). These are severe abnormalities of the cerebral cortex, the brain's outermost layer, which normally contains complex folds that are densely packed with brain cells. In MCD, the cortex is smaller and its folds are less complex. Affected children have severe intellectual disabilities and may not reach developmental milestones.

Different types of MCD are recognized based on anatomy. They carry names like microcephaly (small brain and head), schizencephaly (fluid filled clefts in the brain), pachygyria (a cortex with thicker, fewer folds) and polymicrogyria (cortex with many small folds). These conditions reflect a failure of brain cells to grow and reach their proper places during development. They can result from prenatal exposure to alcohol, drugs and some viruses. In many cases, the cause is genetic, but the specific genetic lesion is often unknown.

Through whole exome sequencing, the new study found a single gene at the root of seemingly distinct types of MCD in children from multiple families. Rather than scanning a person's entire genome for mutations, this technique focuses on the protein-coding bits of DNA, or exome, which makes up about 1.5 percent of the genome.

Genetic forms of MCD occur worldwide and in all kinds of families, but the highest incidence is among children born to parents who are related. Dr. Gunel and his colleagues at Yale teamed up with investigators in Turkey to study Turkish families with MCD. The country has a tradition of first- and second-cousin marriages, and thus a relatively high incidence of MCD.

The study began by focusing on two related children who were diagnosed with microcephaly. Whole exome sequencing revealed that both children had mutations in a gene called WDR62. As the study grew to include children from other families with microcephaly, many of the children were found to have mutations in the same gene. Unexpectedly, brain imaging revealed that the children also tended to have other types of MCD, superimposed with microcephaly. In all, the investigators found 6 unique mutations in the WDR62 gene among 30 families.

Those results show that a single gene "is required for strikingly diverse aspects of human cortical brain development," said Dr. Gunel.

No one knows precisely what WDR62 does, but related proteins are known to regulate the processing of RNA (the intermediate between DNA and protein). The researchers found that in the developing mouse and human brain, WDR62 is enriched in a band of brain tissue that contains neural stem cells. They plan to explore the exact functions of WDR62 in mouse studies. Meanwhile, they will use their Recovery Act grant to extend whole exome sequencing to hundreds of additional families with MCD.

The technology should prove to be quick and cost effective for identifying the roots of other rare genetic disorders too, according to Dr. Gunel. In his laboratory, whole genome sequencing takes several weeks and costs about $50,000, while whole exome sequencing takes 9 days and costs about $3,500, he said.

In addition to NINDS, other support for the study came from a Clinical and Translational Science Award from NIH's National Center for Research Resources, and from NIH's National Institute of Mental Health.

NINDS (www.ninds.nih.gov) is the nation's leading funder of research on the brain and nervous system. The mission of NIMH (www.nimh.nih.gov) is to reduce the burden of mental and behavioral disorders through research on mind, brain and behavior. NCRR (www.ncrr.nih.gov) provides laboratory scientists and clinical researchers with the resources and training they need to understand, detect, treat and prevent a wide range of diseases.

The National Institutes of Health (NIH) — The Nation's Medical Research Agency — includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. It is the primary federal agency for conducting and supporting basic, clinical and translational medical research, and it investigates the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov.

The activities described in this release are being funded through the American Recovery and Reinvestment Act. More information about NIH's Recovery Act grant funding opportunities can be found at http://grants.nih.gov/recovery/. To track the progress of HHS activities funded through the Recovery Act, visit www.hhs.gov/recovery. To track all federal funds provided through the Recovery Act, visit www.recovery.gov.

Reference: Bilguvar K, Ozturk AK et al. "Whole exome sequencing identifies WDR62 mutations in severe brain cortical malformations." Nature, published online August 22, 2010.

Daniel Stimson | EurekAlert!
Further information:
http://www.ninds.nih.gov

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>