Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene related to aging plays role in stem cell differentiation

07.06.2010
A gene shown to play a role in the aging process appears to play a role in the regulation of the differentiation of embryonic stem cells, according to researchers from the Center for Stem Cell Biology and Regenerative Medicine and the Department of Medicine at Thomas Jefferson University.

In the study, published online in the journal Aging Cell, the researchers identified a protein interaction that controls the silencing of Oct4, a key transcription factor that is critical to ensuring that embryonic stem cells remain pluripotent. The protein, WRNp, is the product of a gene associated with Werner syndrome, an autosomal recessive disorder hallmarked by premature aging. The gene expression in Werner syndrome closely resembles that of normal aging, and as a result, Werner syndrome is an accepted model of aging.

They first found that WRNp accumulates at the Oct4 promoter in differentiating stem cells. They then found that WRNp interacts with another protein called Dnmt3b to control DNA methylation at the Oct4 promoter, according to researchers led by René Daniel, M.D., Ph.D., associate professor of Medicine.

Previously, Dnmt3b was identified to be a key player in the DNA methylation of the Oct4 promoter. DNA methylation of the Oct4 promoter inactivates the Oct4 gene. The inactivation, or silencing, of this gene is necessary for stem cell differentiation.

"We showed that the depletion of WRNp blocked the recruitment of Dnmt3b to the Oct4 promoter, and resulted in reduced methylation," Dr. Daniel said. "The reduced DNA methylation was associated with continued Oct4 expression, which resulted in attenuated differentiation."

Until now, the focus of studies on the role of WRNp in aging has been on telomeres. These studies have shown that telomeres undergo accelerated shortening and loss in Werner syndrome cells. But it remains to be shown if this is the major role that WRNp plays in the aging process.

"These results reveal a novel function of WRNp, and demonstrate that WRNp controls a key step in pluripotent stem cell differentiation," Dr. Daniel said. "Our data support the emerging hypothesis that attenuated stem cell differentiation is involved in aging. This lack of differentiated cells may contribute to failure to maintain organ or tissue function in the later stages of life."

Emily Shafer | EurekAlert!
Further information:
http://www.jefferson.edu

More articles from Life Sciences:

nachricht 'Lipid asymmetry' plays key role in activating immune cells
20.02.2018 | Biophysical Society

nachricht New printing technique uses cells and molecules to recreate biological structures
20.02.2018 | Queen Mary University of London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>