Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene makes some HIV-infected patients more at risk for fungal disease

27.08.2013
HIV-infected people who carry a gene for a specific protein face a 20-fold greater risk of contracting cryptococcal disease, according to a study published in mBio®, the online open-access journal of the American Society for Microbiology.

Cryptococcus neoformans is the most common cause of fungal meningitis among HIV-infected individuals. While the disease is a risk for everyone with HIV who has a very low level of CD4+ T cells, researchers have discovered that those with the gene for the protein FCGR3A 158V have an immune cell receptor that binds tightly to antibody-bound C. neoformans. Perversely, this tight binding by a vigilant immune system may mean the patient's own immune system strength becomes a weakness when facing the fungus.

"We found that this high affinity Fc receptor polymorphism was very highly overrepresented in the patients that got cryptococcal disease," says corresponding author Liise-anne Pirofski of the Albert Einstein College of Medicine & Montefiore Medical Center in The Bronx, New York. Patients with two copies of the high affinity Fc receptor gene had an almost 20-fold increased risk of contracting the disease.

"It's surprising that a receptor involved with a higher capacity to bind immune complexes would be associated with susceptibility in patients with HIV," says Pirofski, since phagocytosis of immune complexes is thought of as a mechanism for fighting invading microorganisms.

Differences among Fc gamma receptors (FCGR) have already been linked to cryptococcosis susceptibility among people who are not infected with HIV, but this new information sheds light on how these receptors could influence susceptibility in HIV patients, who are at elevated risk of developing cryptococcosis and are known to have high levels of antibodies to C. neoformans. FCGRs are proteins expressed on the outsides of different kinds of immune cells, including B lymphocytes, natural killer cells, macrophages, neutrophils, and mast cells. They bind to antibodies that have grabbed onto invading pathogens, then stimulate the immune cells to destroy the invaders.

The researchers performed PCR-based genotyping on banked samples from 164 men enrolled in the Multicenter AIDS Cohort Study (MACS), including 55 who were HIV-infected and developed cryptococcal disease, a control group of 54 who were HIV-infected and 55 who were HIV-uninfected. After correcting for a number of factors like demographics and T cell counts, they found a strong association between the gene for the high-affinity FCGR3A 158V allele and the risk of cryptococcal disease in HIV-infected men.

To figure out what that meant, they followed up with binding studies and showed that cells that express FCGR3A 158V bind more strongly to antibody-C. neoformans complexes. Greater affinity for the antibody-C. neoformans complex could increase the attachment of the fungus to monocytes or macrophages, which could in turn increase the numbers of fungi living and replicating inside immune cells. And there's also the possibility that these infected immune cells could act like a Trojan horse, delivering C. neoformans cells across the blood-brain barrier and allowing them to infect the brain. Pirofski says these possibilities are now under investigation.

C. neoformans is found all over the environment and studies show that nearly everyone is exposed to the fungus during their lifetime. However, the organism rarely causes disease in healthy people, but strikes most often in people with weakened immune systems. It is the main cause of fungal meningitis in people living with HIV, and causes devastating disease in those with profound CD4+ T cell deficiency.

But not everyone with serious T cell deficiency develops cryptococcosis, and there is currently no way of knowing which patients will develop disease. Pirofski says a test that could distinguish who is most at risk has the potential to save countless lives, particularly in sub-Saharan Africa, which is home to 69% of all people living with HIV.

"This could be the beginning of a predictive test, at least in high-risk people" says Pirofski. "I think that we're ready to study this receptor further as a risk factor for disease in larger cohorts."

mBio® is an open access online journal published by the American Society for Microbiology to make microbiology research broadly accessible. The focus of the journal is on rapid publication of cutting-edge research spanning the entire spectrum of microbiology and related fields. It can be found online at http://mbio.asm.org.

The American Society for Microbiology is the largest single life science society, composed of over 39,000 scientists and health professionals. ASM's mission is to advance the microbiological sciences as a vehicle for understanding life processes and to apply and communicate this knowledge for the improvement of health and environmental and economic well-being worldwide.

Jim Sliwa | EurekAlert!
Further information:
http://www.asmusa.org

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>