Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene linked to increasingly common type of blood cancer

21.07.2009
UC Berlekey-TGen scientists discovery published in Nature Genetics

California and Arizona researchers have identified a gene variant that carries nearly twice the risk of developing an increasingly common type of blood cancer, according to a study published online today by the science journal Nature Genetics.

Investigators at the University of California, Berkeley (UC Berkeley) and at the Translational Genomics Research Institute (TGen) found that mutations in a gene called C6orf15, or STG, are associated with the risk of developing follicular lymphoma. This is a cancer of the body's disease-fighting network whose rates have nearly doubled in the past three decades.

In the first genome-wide association study of non-Hodgkin lymphoma, scientists at UC Berkeley and TGen identified a SNP – a single nucleotide polymorphism – that could determine susceptibility to follicular lymphoma. The SNP, a DNA variant within the more than 3-billion base pairs in the human genome, was identified as rs6457327.

The study was led by Dr. Christine Skibola, Associate Adjunct Professor of Environmental Health Sciences at UC Berkeley's School of Public Health, and by Dr. Kevin M. Brown, an Associate Investigator in the Integrated Cancer Genomics Division of TGen, a Phoenix-based, non-profit biomedical research institute.

"What's exciting about this study is that we found a target in the genome influencing the susceptibility to follicular lymphoma, which helps us discern between three major types of lymphomas," said Skibola, the paper's co-lead author. "That had not been done before on a genome-wide scale. It is our hope that this research may some day be useful in helping develop prevention, early detection and treatment of this disease."

Follicular lymphoma accounts for as much as 30 percent of all non-Hodgkin lymphoma, a cancer of the lymphatic system involving the blood, bone marrow and lymph nodes. In NHL, tumors develop in lymphocytes, a type of white blood cell. Follicular lymphoma arises from B-cells, a specific type of white blood cell. NHL is the fifth most common type of cancer in the U.S., and is newly diagnosed in about 66,000 Americans each year, and annually kills nearly 20,000, according to the National Cancer Institute.

Researchers found that, for SNP rs6457327, the presence of the G allele – a DNA letter that varies within the genome – was protective against follicular lymphoma, while the presence of the A allele was predictive of an increased risk of developing follicular lymphoma. Dr. Brown said individuals who had the A variant were nearly twice as likely to develop follicular lymphoma.

"There's clearly a genetic component to the disease. The hope is to one day be able to take these results, combine them with other tests, and turn them into an individualized assessment of disease risk,'' said Dr. Brown, the study's other co-lead author. "This is a starting point.''

Dr. Skibola said more studies would be needed to determine the biological importance of other STG SNPs linked to rs6457327 that might change the function of the gene. This could help determine how they might influence risk of the disease.

The scientists also want to know if genetic susceptibility to follicular lymphoma is associated with:

Environmental factors, such as exposure to the sun.

Conditions such as psoriasis – a chronic, autoimmune skin disease closely associated with a similar region of the genome.

Exposure to viruses. Follicular lymphoma is associated with HIV infection, occurring in as many as 10 percent of all HIV-positive patients, according to the Lymphoma Research Foundation.

The genome-wide association study was conducted using DNA from a population-based non-Hodgkin lymphoma case-control study in the San Francisco Bay Area led by UC San Francisco researchers. Follow-up validation studies were done using independent case-control studies from Canada and Germany.

To reduce the potential for complicating factors, the more than 3,000 samples in the UC Berkeley-TGen study were from individuals who were HIV negative. Dr. Brown said future studies could include HIV-positive individuals, if enough samples were made available.

This pooled genome-wide association study used by the UC Berkeley-TGen investigators allowed them to screen more than 500,000 SNPs. The nearly 90 most significant SNPs were then genotyped to more closely examine their association with lymphoma.

This same pooling technique has been pioneered by TGen to screen for genes in other studies. Additional collaborations between UC Berkeley and TGen are planned.

"This study paves the way for more in-depth research into this type of cancer, which is increasingly affecting more people,'' said Dr. Jeffrey Trent, TGen's President and Research Director. "This study also builds an important collaborative relationship between TGen and UC Berkeley, one of the nation's top universities.''

Other co-authors of the study include researchers from UC Berkeley, UC San Francisco, the International Computer Science Institute in Berkeley, the British Columbia Cancer Agency in Canada, and the German Cancer Research Center in Germany.

Press Contact:
Sarah Yang
UC Berkeley Media Representative
510-643-7741
scyang@berkeley.edu
About TGen
The Translational Genomics Research Institute (TGen) is a Phoenix, Arizona-based non-profit organization dedicated to conducting groundbreaking research with life changing results. Research at TGen is focused on helping patients with diseases such as cancer, neurological disorders and diabetes. TGen is on the cutting edge of translational research where investigators are able to unravel the genetic components of common and complex diseases. Working with collaborators in the scientific and medical communities, TGen believes it can make a substantial contribution to the efficiency and effectiveness of the translational process. TGen is affiliated with the Van Andel Research Institute in Grand Rapids, Michigan. For more information, visit: www.tgen.org.
Press Contact:
Steve Yozwiak
TGen Senior Science Writer
602-343-8704
syozwiak@tgen.org

Steve Yozwiak | EurekAlert!
Further information:
http://www.tgen.org

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>