Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel Gene Increases Yeast’s Appetite for Plant Sugars

27.07.2011
For thousands of years, bakers and brewers have relied on yeast to convert sugar into alcohol and carbon dioxide. Yet, University of Wisconsin-Madison researchers eager to harness this talent for brewing biofuels have found when it comes to churning through sugars, these budding microbes can be picky eaters.

Published online this week in the Proceedings of the National Academy of Sciences, a Great Lakes Bioenergy Research Center team identified several new genes that improve yeast’s ability to use xylose, a five-carbon sugar that can make up nearly half of available plant sugars. If researchers can coax yeast into using most of these sugars, they can improve the efficiency of producing renewable fuels from biomass crops like corn stover or switchgrass.

“Strains of yeast that are currently used for biofuel production convert xylose to ethanol slowly and inefficiently, and only do so after all the glucose is exhausted,” says the study’s lead author Dana Wohlbach, a postdoctoral researcher at UW-Madison. “For industrial purposes, the faster a yeast can consume the sugars, the better, since more sugar consumption means more ethanol.”

The team partnered with the Department of Energy Joint Genome Institute and sequenced the genomes of two types of fungi that reside in the habitats of bark beetles. Since woody biomass like bark contains a lot of xylose, these fungi were well adapted at using this type of sugar to both grow and also provide nutrients for the beetles.

Applying the power of comparative genomics to fungal ecology, scientists were able to rapidly identify genes that have potential for improving biomass conversion.

“By comparing the genome sequences and expression patterns of many yeasts —rather than just looking at one — we were able to identify elements common to all xylose-fermenting yeasts, and elements absent from non-xylose fermenting yeasts,” says Wohlbach.

The team then introduced several genes into S. cerevisiae, which cannot normally consume xylose. By introducing one gene in particular, named CtAKR, the researchers significantly increased xylose consumption, an important step for economic biofuel production from plant material.

“This research has provided us with a great genomic toolset,” says Wohlbach. “We’re excited to explore new ways to increase yeast’s ability to consume xylose and improve ethanol production for cellulosic biofuels.”

The Great Lakes Bioenergy Research Center (GLBRC) is one of three Department of Energy Bioenergy Research Centers funded to make transformational breakthroughs that will form the foundation of new cellulosic biofuels technology. The GLBRC is led by UW-Madison, with Michigan State University as the major partner. Additional scientific partners are DOE National Laboratories, other universities and a biotechnology company. For more information on the GLBRC, visit www.glbrc.org.

The U.S. Department of Energy Joint Genome Institute, supported by the DOE Office of Science, is committed to advancing genomics in support of DOE missions related to clean energy generation and environmental characterization and cleanup. DOE JGI, headquartered in Walnut Creek, Calif., provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. Follow DOE JGI on Twitter.

Margaret Broeren, mbroeren@glbrc.wisc.edu

Margaret Broeren | Newswise Science News
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht Nesting aids make agricultural fields attractive for bees
20.07.2017 | Julius-Maximilians-Universität Würzburg

nachricht The Kitchen Sponge – Breeding Ground for Germs
20.07.2017 | Hochschule Furtwangen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>