Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene identified that prevents stem cells from turning cancerous

15.10.2010
Stem cells, the prodigious precursors of all the tissues in our body, can make almost anything, given the right circumstances. Including, unfortunately, cancer.

Now research from Rockefeller University shows that having too many stem cells, or stem cells that live for too long, can increase the odds of developing cancer.

By identifying a mechanism that regulates programmed cell death in precursor cells for blood, or hematopoietic stem cells, the work is the first to connect the death of such cells to a later susceptibility to tumors in mice. It also provides evidence of the potentially carcinogenic downside to stem cell treatments, and suggests that nature has sought to balance stem cells' regenerative power against their potentially lethal potency.

Research associate Maria Garcia-Fernandez, Hermann Steller, head of the Strang Laboratory of Apoptosis and Cancer Biology, and their colleagues explored the activity of a gene called Sept4, which encodes a protein, ARTS, that increases programmed cell death, or apoptosis, by antagonizing other proteins that prevent cell death. ARTS was originally discovered by Sarit Larisch, a visiting professor at Rockefeller, and is found to be lacking in human leukemia and other cancers, suggesting it suppresses tumors. To study the role of ARTS, the experimenters bred a line of mice genetically engineered to lack the Sept4 gene.

For several years, Garcia-Fernandez studied cells that lacked ARTS, looking for signs of trouble relating to cell death. In mature B and T cells, she could not find any, however, so she began to look at cells earlier and earlier in development, until finally she was comparing hematopoietic progenitor and stem cells. Here she found crucial differences, to be published Friday in Genes and Development.

Newborn ARTS-deprived mice had about twice as many hematopoietic stem cells as their normal, ARTS-endowed peers, and those stem cells were extraordinary in their ability to survive experimentally induced mutations.

"The increase in the number of hematopoietic progenitor and stem cells in Sept4-deficient mice brings with it the possibility of accelerating the accumulation of mutations in stem cells," says Garcia-Fernandez. "They have more stem cells with enhanced resistance to apoptosis. In the end, that leads to more cells accumulating mutations that cannot be eliminated."

Indeed, the ARTS-deprived mice developed spontaneous tumors at about twice the rate of their controls. "We make a connection between apoptosis, stem cells and cancer that has not been made in this way before: this pathway is critically important in stem cell death and in reducing tumor risk," Steller says. "The work supports the idea that the stem cell is the seed of the tumor and that the transition from a normal stem cell to a cancer stem cell involves increased resistance to apoptosis."

ARTS interferes with molecules called inhibitor of apoptosis proteins (IAPs), which prevent cells from killing themselves. By inhibiting these inhibitors, under the right circumstances ARTS helps to take the brakes off the process of apoptosis, permitting the cell to die on schedule. Pharmaceutical companies are working to develop small molecule IAP antagonists, but this research is the first to show that inactivating a natural IAP antagonist actually causes tumors to grow, Steller says. It also suggests that the premature silencing of the Sept4/ARTS pathway at the stem cell level may herald cancer to come.

"This work not only defines the role of the ARTS gene in the underlying mechanism of mammalian tumor cell resistance to programmed cell death, but also links this gene to another hallmark of cancer, stem and progenitor cell proliferation," said Marion Zatz, who oversees cell death grants, including Steller's, at the NIH's National Institute of General Medical Sciences. "The identification of the ARTS gene and its role in cancer cell death provides a potential target for new therapeutic approaches."

Brett Norman | EurekAlert!
Further information:
http://www.rockefeller.edu

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>