Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene may be good target for tough-to-kill prostate cancer cells

29.09.2011
Purdue University scientists believe they have found an effective target for killing late-stage, metastatic prostate cancer cells.

Xiaoqi Liu, an assistant professor of biochemistry and member of Purdue's Center for Cancer Research, and graduate student Shawn Liu are focusing on the function of a gene called Polo-like kinase (Plk1), a critical regulator of the cell cycle. Plk1 is also an oncogene, which tends to mutate and can cause cancer.

The researchers found that later-stage prostate cancer cells are missing Pten, a tumor-suppressor gene. The loss of Pten causes problems during cell division. Instead of the parent cell giving equal copies of DNA to two daughter cells, those new cells receive disproportionate amounts, causing mutations.

"This turns out to be a major driving factor in future cancer," said Xiaoqi Liu, whose findings were published in the Journal of Biological Chemistry. "Without Pten, there is huge potential to become a cancer cell."

When Pten is diminished, the cells become stressed. To compensate, they increase production of Plk1, which causes rapid cell division.

"That's usually a hallmark of cancer formation," Xiaoqi Liu said.

This particular type of later-stage prostate cancer is troublesome because the cells do not respond to drugs aimed at stopping cell division and metastatic cancers spread to other areas. When Pten is missing, Xiaoqi Liu said, those drugs actually increase the production of more Plk1.

To test the theory that Plk1 is a key to cancer formation, the researchers tested a Plk1 inhibitor called BI 2356 on both human cancer cells and mice. In both tests, some cancer cells had Pten present while others had lost it.

In both cases, the cells without Pten responded to the drug.

"In later stages of prostate cancer, cells have lost Pten," Xiaoqi Liu said. "This means the Plk1 inhibitor can be a good drug for treatment of those tumors."

Xiaoqi Liu said tests also showed that BI 2536 could also be effective at low dosages, meaning side effects might be less severe.

Next, the researchers will try to replicate the findings in another mouse model. The National Institutes of Health funded the research.

Contributing to the research were: Timothy Ratliff, the Robert Wallace Miller Director of the Purdue Center for Cancer Research; Stephen Konieczny, a Purdue professor of biological sciences; Bennett Elzey, a Purdue assistant research professor in comparative pathobiology; Bing Song, a Purdue graduate student in biological sciences; Liang Cheng, an Indiana University professor of pathology; and Nihal Ahmad, a University of Wisconsin professor of dermatology.

Writer: Brian Wallheimer, 765-496-2050, bwallhei@purdue.edu
Source: Xiaoqi Liu, 765-496-3764, xiaoqi@purdue.edu

Brian Wallheimer | EurekAlert!
Further information:
http://www.purdue.edu

Further reports about: Cancer Plk1 biological sciences cancer cells cell division prostate cancer

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>