Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Gene may be good target for tough-to-kill prostate cancer cells

Purdue University scientists believe they have found an effective target for killing late-stage, metastatic prostate cancer cells.

Xiaoqi Liu, an assistant professor of biochemistry and member of Purdue's Center for Cancer Research, and graduate student Shawn Liu are focusing on the function of a gene called Polo-like kinase (Plk1), a critical regulator of the cell cycle. Plk1 is also an oncogene, which tends to mutate and can cause cancer.

The researchers found that later-stage prostate cancer cells are missing Pten, a tumor-suppressor gene. The loss of Pten causes problems during cell division. Instead of the parent cell giving equal copies of DNA to two daughter cells, those new cells receive disproportionate amounts, causing mutations.

"This turns out to be a major driving factor in future cancer," said Xiaoqi Liu, whose findings were published in the Journal of Biological Chemistry. "Without Pten, there is huge potential to become a cancer cell."

When Pten is diminished, the cells become stressed. To compensate, they increase production of Plk1, which causes rapid cell division.

"That's usually a hallmark of cancer formation," Xiaoqi Liu said.

This particular type of later-stage prostate cancer is troublesome because the cells do not respond to drugs aimed at stopping cell division and metastatic cancers spread to other areas. When Pten is missing, Xiaoqi Liu said, those drugs actually increase the production of more Plk1.

To test the theory that Plk1 is a key to cancer formation, the researchers tested a Plk1 inhibitor called BI 2356 on both human cancer cells and mice. In both tests, some cancer cells had Pten present while others had lost it.

In both cases, the cells without Pten responded to the drug.

"In later stages of prostate cancer, cells have lost Pten," Xiaoqi Liu said. "This means the Plk1 inhibitor can be a good drug for treatment of those tumors."

Xiaoqi Liu said tests also showed that BI 2536 could also be effective at low dosages, meaning side effects might be less severe.

Next, the researchers will try to replicate the findings in another mouse model. The National Institutes of Health funded the research.

Contributing to the research were: Timothy Ratliff, the Robert Wallace Miller Director of the Purdue Center for Cancer Research; Stephen Konieczny, a Purdue professor of biological sciences; Bennett Elzey, a Purdue assistant research professor in comparative pathobiology; Bing Song, a Purdue graduate student in biological sciences; Liang Cheng, an Indiana University professor of pathology; and Nihal Ahmad, a University of Wisconsin professor of dermatology.

Writer: Brian Wallheimer, 765-496-2050,
Source: Xiaoqi Liu, 765-496-3764,

Brian Wallheimer | EurekAlert!
Further information:

Further reports about: Cancer Plk1 biological sciences cancer cells cell division prostate cancer

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>