Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene find offers hope of screening test for bone disease

03.05.2010
Scientists have discovered three genes linked to the development of Paget's disease, a painful bone condition that affects up to one million people in the UK.

The international team of scientists, led by the University of Edinburgh, believes the genes are involved in regulating the rate at which bone is repaired, providing an explanation of why the disease might occur.

Paget's disease disrupts the body's normal process of breaking down old bone and replacing it. The condition leads to enlarged and malformed bones and patients can suffer from bone pain, brittle bones susceptible to fractures, and advanced arthritis. It affects more people in the UK than anywhere else in the world.

The scientists say that identifying the genes that predispose people to the bone disease could lead to the development of a screening test to identify those most at risk, and improve access to preventative treatment.

Researchers – funded by Arthritis Research UK and Paget Association UK – studied the genes of 1250 patients with Paget's disease to find the genes that could cause the condition.

The team – which included scientists from Spain, UK, New Zealand, and Australia – found that three genes that were faulty more frequently in patients with the bone disease than in healthy people.

Together, the faulty genes accounted for the development of Paget's disease in about 70 per cent of cases.

The results – published in the journal Nature Genetics – confirm that genes play a crucial role in the development of Paget's disease, which explains why many patients have a family history of the condition.

It is hoped that the discovery will allow early detection of the disease and allow doctors to give preventative treatment before bones have become damaged.

Dr Omar Albagha, who performed the study at the University of Edinburgh, said, "These findings represent a major advancement to our understanding of the disease since, until now, only one gene was known to cause about 10 per cent of cases with Paget's disease. The three genes identified from this study contribute to 70 per cent of the disease risk – quite unusual in common diseases. We are currently extending our studies to identify the genes responsible for the remaining 20 per cent of the disease risk."

Professor Stuart Ralston, Arthritis Research UK Professor of Rheumatology, who led the project at the University of Edinburgh, said: "Our work shows that these three genes together very strongly predict the development of Paget's disease. Their effects are so powerful that they could be of real value in screening for risk of the disease. This is important since we know that if treatment is left too late, then irreversible damage to the bones can occur. If we were able to intervene at an early stage with preventative therapy, guided by genetic profiling, this would be a major advance."

Anna Borthwick | EurekAlert!
Further information:
http://www.ed.ac.uk

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>