Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene find offers hope of screening test for bone disease

03.05.2010
Scientists have discovered three genes linked to the development of Paget's disease, a painful bone condition that affects up to one million people in the UK.

The international team of scientists, led by the University of Edinburgh, believes the genes are involved in regulating the rate at which bone is repaired, providing an explanation of why the disease might occur.

Paget's disease disrupts the body's normal process of breaking down old bone and replacing it. The condition leads to enlarged and malformed bones and patients can suffer from bone pain, brittle bones susceptible to fractures, and advanced arthritis. It affects more people in the UK than anywhere else in the world.

The scientists say that identifying the genes that predispose people to the bone disease could lead to the development of a screening test to identify those most at risk, and improve access to preventative treatment.

Researchers – funded by Arthritis Research UK and Paget Association UK – studied the genes of 1250 patients with Paget's disease to find the genes that could cause the condition.

The team – which included scientists from Spain, UK, New Zealand, and Australia – found that three genes that were faulty more frequently in patients with the bone disease than in healthy people.

Together, the faulty genes accounted for the development of Paget's disease in about 70 per cent of cases.

The results – published in the journal Nature Genetics – confirm that genes play a crucial role in the development of Paget's disease, which explains why many patients have a family history of the condition.

It is hoped that the discovery will allow early detection of the disease and allow doctors to give preventative treatment before bones have become damaged.

Dr Omar Albagha, who performed the study at the University of Edinburgh, said, "These findings represent a major advancement to our understanding of the disease since, until now, only one gene was known to cause about 10 per cent of cases with Paget's disease. The three genes identified from this study contribute to 70 per cent of the disease risk – quite unusual in common diseases. We are currently extending our studies to identify the genes responsible for the remaining 20 per cent of the disease risk."

Professor Stuart Ralston, Arthritis Research UK Professor of Rheumatology, who led the project at the University of Edinburgh, said: "Our work shows that these three genes together very strongly predict the development of Paget's disease. Their effects are so powerful that they could be of real value in screening for risk of the disease. This is important since we know that if treatment is left too late, then irreversible damage to the bones can occur. If we were able to intervene at an early stage with preventative therapy, guided by genetic profiling, this would be a major advance."

Anna Borthwick | EurekAlert!
Further information:
http://www.ed.ac.uk

More articles from Life Sciences:

nachricht In living color: Brightly-colored bacteria could be used to 'grow' paints and coatings
20.02.2018 | University of Cambridge

nachricht Computers aid discovery of new, inexpensive material to make LEDs with high color quality
20.02.2018 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Rare find from the deep sea

20.02.2018 | Life Sciences

In living color: Brightly-colored bacteria could be used to 'grow' paints and coatings

20.02.2018 | Life Sciences

Observing and controlling ultrafast processes with attosecond resolution

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>