Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene doping detectable with a simple blood test

03.09.2010
German scientists from Tübingen and Mainz have developed a blood test that can reliably detect gene doping even after 56 days

Scientists at the universities in Tübingen and Mainz have developed a test that can provide conclusive proof of gene doping.

"For the first time, a direct method is now available that uses conventional blood samples to detect doping via gene transfer and is still effective if the actual doping took place up to 56 days before," Professor Perikles Simon, MD, PhD from Johannes Gutenberg University Mainz, Germany explained on Thursday.

"This represents a relatively low-cost method of detecting several of the most common doping genes," Simon stated in the presentation of the process. It was previously impossible to prove that an athlete had undergone gene doping. "The process of inserting individual genes in specific body cells stems from the idea of curing severe illnesses with this new technology.

It was previously thought that it would only be possible to detect gene doping via gene transfer using an extremely costly indirect test procedure from the field of molecular medicine," explained gene therapist Professor Michael Bitzer, MD from the University Hospital of the Eberhard Karls University of Tübingen.

The gene doping study conducted by the scientists from Tübingen and Mainz was published in the online edition of the internationally renowned scientific journal "Gene Therapy" on Thursday. According to the study, the test provides clear "yes-or-no answers" based on whether or not so-called transgenic DNA is present in blood samples. Transgenic DNA or tDNA does not stem from the person being tested but has been transferred into their body – often via viruses – in order to create performance-enhancing substances such as erythropoetin (EPO) for forming red blood cells. "The body of a gene-doped athlete produces the performance-enhancing hormones itself without having to introduce any foreign substances to the body. Over time, the body becomes its own doping supplier," explained Simon. In 2006, as a member of the University Hospital in Tübingen, he developed a procedure that enables even the tiniest traces of transgenic DNA to be detected in the blood. The efficiency of this procedure has now been proven for the first time in laboratory mice. A key component of the animal procedure was a sophisticated process that was able to insert the foreign genetic material extremely specifically to the muscles around a small puncture area.

This triggers excess production of a hormone, which prompts the generation of new blood vessels. Even two months after the genes were injected into the muscles, researchers were able to differentiate clearly between the mice subjected to gene doping and those that were not. "The development of a reliable method for detecting misuse of gene transfer will be used to ensure that this new technology, for which the side effects are only partially known, is used exclusively in the treatment of severe diseases," stated Bitzer. Over the next few months, the University Hospital in Tübingen is planning a relevant therapy study for advanced tumor patients.

The safe and sensitive detection procedure developed by the scientists in Mainz and Tübingen was then proven in a so-called specificity test on 327 blood samples taken from professional and recreational athletes. Researchers now believe that athletes will no longer profit from the misuse of gene therapy for doping purposes. "At the very least, the risk of being discovered months after the gene transfer has taken place should deter even the most daring dopers," Simon believes. The World Anti Doping Agency (WADA) has financed this research over the past four years with a total of 980,000 US Dollars.

Petra Giegerich | idw
Further information:
http://www.nature.com/gt/journal/v17/n8/full/gt201049a.html
http://www.wipo.int/pctdb/en/wo.jsp?WO=2007124861

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>