Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene doping detectable with a simple blood test

03.09.2010
German scientists from Tübingen and Mainz have developed a blood test that can reliably detect gene doping even after 56 days

Scientists at the universities in Tübingen and Mainz have developed a test that can provide conclusive proof of gene doping.

"For the first time, a direct method is now available that uses conventional blood samples to detect doping via gene transfer and is still effective if the actual doping took place up to 56 days before," Professor Perikles Simon, MD, PhD from Johannes Gutenberg University Mainz, Germany explained on Thursday.

"This represents a relatively low-cost method of detecting several of the most common doping genes," Simon stated in the presentation of the process. It was previously impossible to prove that an athlete had undergone gene doping. "The process of inserting individual genes in specific body cells stems from the idea of curing severe illnesses with this new technology.

It was previously thought that it would only be possible to detect gene doping via gene transfer using an extremely costly indirect test procedure from the field of molecular medicine," explained gene therapist Professor Michael Bitzer, MD from the University Hospital of the Eberhard Karls University of Tübingen.

The gene doping study conducted by the scientists from Tübingen and Mainz was published in the online edition of the internationally renowned scientific journal "Gene Therapy" on Thursday. According to the study, the test provides clear "yes-or-no answers" based on whether or not so-called transgenic DNA is present in blood samples. Transgenic DNA or tDNA does not stem from the person being tested but has been transferred into their body – often via viruses – in order to create performance-enhancing substances such as erythropoetin (EPO) for forming red blood cells. "The body of a gene-doped athlete produces the performance-enhancing hormones itself without having to introduce any foreign substances to the body. Over time, the body becomes its own doping supplier," explained Simon. In 2006, as a member of the University Hospital in Tübingen, he developed a procedure that enables even the tiniest traces of transgenic DNA to be detected in the blood. The efficiency of this procedure has now been proven for the first time in laboratory mice. A key component of the animal procedure was a sophisticated process that was able to insert the foreign genetic material extremely specifically to the muscles around a small puncture area.

This triggers excess production of a hormone, which prompts the generation of new blood vessels. Even two months after the genes were injected into the muscles, researchers were able to differentiate clearly between the mice subjected to gene doping and those that were not. "The development of a reliable method for detecting misuse of gene transfer will be used to ensure that this new technology, for which the side effects are only partially known, is used exclusively in the treatment of severe diseases," stated Bitzer. Over the next few months, the University Hospital in Tübingen is planning a relevant therapy study for advanced tumor patients.

The safe and sensitive detection procedure developed by the scientists in Mainz and Tübingen was then proven in a so-called specificity test on 327 blood samples taken from professional and recreational athletes. Researchers now believe that athletes will no longer profit from the misuse of gene therapy for doping purposes. "At the very least, the risk of being discovered months after the gene transfer has taken place should deter even the most daring dopers," Simon believes. The World Anti Doping Agency (WADA) has financed this research over the past four years with a total of 980,000 US Dollars.

Petra Giegerich | idw
Further information:
http://www.nature.com/gt/journal/v17/n8/full/gt201049a.html
http://www.wipo.int/pctdb/en/wo.jsp?WO=2007124861

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>