Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene doping detectable with a simple blood test

03.09.2010
German scientists from Tübingen and Mainz have developed a blood test that can reliably detect gene doping even after 56 days

Scientists at the universities in Tübingen and Mainz have developed a test that can provide conclusive proof of gene doping.

"For the first time, a direct method is now available that uses conventional blood samples to detect doping via gene transfer and is still effective if the actual doping took place up to 56 days before," Professor Perikles Simon, MD, PhD from Johannes Gutenberg University Mainz, Germany explained on Thursday.

"This represents a relatively low-cost method of detecting several of the most common doping genes," Simon stated in the presentation of the process. It was previously impossible to prove that an athlete had undergone gene doping. "The process of inserting individual genes in specific body cells stems from the idea of curing severe illnesses with this new technology.

It was previously thought that it would only be possible to detect gene doping via gene transfer using an extremely costly indirect test procedure from the field of molecular medicine," explained gene therapist Professor Michael Bitzer, MD from the University Hospital of the Eberhard Karls University of Tübingen.

The gene doping study conducted by the scientists from Tübingen and Mainz was published in the online edition of the internationally renowned scientific journal "Gene Therapy" on Thursday. According to the study, the test provides clear "yes-or-no answers" based on whether or not so-called transgenic DNA is present in blood samples. Transgenic DNA or tDNA does not stem from the person being tested but has been transferred into their body – often via viruses – in order to create performance-enhancing substances such as erythropoetin (EPO) for forming red blood cells. "The body of a gene-doped athlete produces the performance-enhancing hormones itself without having to introduce any foreign substances to the body. Over time, the body becomes its own doping supplier," explained Simon. In 2006, as a member of the University Hospital in Tübingen, he developed a procedure that enables even the tiniest traces of transgenic DNA to be detected in the blood. The efficiency of this procedure has now been proven for the first time in laboratory mice. A key component of the animal procedure was a sophisticated process that was able to insert the foreign genetic material extremely specifically to the muscles around a small puncture area.

This triggers excess production of a hormone, which prompts the generation of new blood vessels. Even two months after the genes were injected into the muscles, researchers were able to differentiate clearly between the mice subjected to gene doping and those that were not. "The development of a reliable method for detecting misuse of gene transfer will be used to ensure that this new technology, for which the side effects are only partially known, is used exclusively in the treatment of severe diseases," stated Bitzer. Over the next few months, the University Hospital in Tübingen is planning a relevant therapy study for advanced tumor patients.

The safe and sensitive detection procedure developed by the scientists in Mainz and Tübingen was then proven in a so-called specificity test on 327 blood samples taken from professional and recreational athletes. Researchers now believe that athletes will no longer profit from the misuse of gene therapy for doping purposes. "At the very least, the risk of being discovered months after the gene transfer has taken place should deter even the most daring dopers," Simon believes. The World Anti Doping Agency (WADA) has financed this research over the past four years with a total of 980,000 US Dollars.

Petra Giegerich | idw
Further information:
http://www.nature.com/gt/journal/v17/n8/full/gt201049a.html
http://www.wipo.int/pctdb/en/wo.jsp?WO=2007124861

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>