Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene doping detectable with a simple blood test

03.09.2010
German scientists from Tübingen and Mainz have developed a blood test that can reliably detect gene doping even after 56 days

Scientists at the universities in Tübingen and Mainz have developed a test that can provide conclusive proof of gene doping.

"For the first time, a direct method is now available that uses conventional blood samples to detect doping via gene transfer and is still effective if the actual doping took place up to 56 days before," Professor Perikles Simon, MD, PhD from Johannes Gutenberg University Mainz, Germany explained on Thursday.

"This represents a relatively low-cost method of detecting several of the most common doping genes," Simon stated in the presentation of the process. It was previously impossible to prove that an athlete had undergone gene doping. "The process of inserting individual genes in specific body cells stems from the idea of curing severe illnesses with this new technology.

It was previously thought that it would only be possible to detect gene doping via gene transfer using an extremely costly indirect test procedure from the field of molecular medicine," explained gene therapist Professor Michael Bitzer, MD from the University Hospital of the Eberhard Karls University of Tübingen.

The gene doping study conducted by the scientists from Tübingen and Mainz was published in the online edition of the internationally renowned scientific journal "Gene Therapy" on Thursday. According to the study, the test provides clear "yes-or-no answers" based on whether or not so-called transgenic DNA is present in blood samples. Transgenic DNA or tDNA does not stem from the person being tested but has been transferred into their body – often via viruses – in order to create performance-enhancing substances such as erythropoetin (EPO) for forming red blood cells. "The body of a gene-doped athlete produces the performance-enhancing hormones itself without having to introduce any foreign substances to the body. Over time, the body becomes its own doping supplier," explained Simon. In 2006, as a member of the University Hospital in Tübingen, he developed a procedure that enables even the tiniest traces of transgenic DNA to be detected in the blood. The efficiency of this procedure has now been proven for the first time in laboratory mice. A key component of the animal procedure was a sophisticated process that was able to insert the foreign genetic material extremely specifically to the muscles around a small puncture area.

This triggers excess production of a hormone, which prompts the generation of new blood vessels. Even two months after the genes were injected into the muscles, researchers were able to differentiate clearly between the mice subjected to gene doping and those that were not. "The development of a reliable method for detecting misuse of gene transfer will be used to ensure that this new technology, for which the side effects are only partially known, is used exclusively in the treatment of severe diseases," stated Bitzer. Over the next few months, the University Hospital in Tübingen is planning a relevant therapy study for advanced tumor patients.

The safe and sensitive detection procedure developed by the scientists in Mainz and Tübingen was then proven in a so-called specificity test on 327 blood samples taken from professional and recreational athletes. Researchers now believe that athletes will no longer profit from the misuse of gene therapy for doping purposes. "At the very least, the risk of being discovered months after the gene transfer has taken place should deter even the most daring dopers," Simon believes. The World Anti Doping Agency (WADA) has financed this research over the past four years with a total of 980,000 US Dollars.

Petra Giegerich | idw
Further information:
http://www.nature.com/gt/journal/v17/n8/full/gt201049a.html
http://www.wipo.int/pctdb/en/wo.jsp?WO=2007124861

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>