Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene discovery potential key to cost-competitive cellulosic ethanol

21.05.2010
Scientists at the Department of Energy's Oak Ridge National Laboratory are improving strains of microorganisms used to convert cellulosic biomass into ethanol, including a recent modification that could improve the efficiency of the conversion process.

Biofuels researchers and industrials have generated improved mutant microorganisms previously, but authors of a paper in the on-line Proceedings of the National Academy of Sciences identify a key Z. mobilis gene for the first time and show the strain's improved efficiency and its potential use for more cost-effective biofuel production.

"Microbes have been breaking down plant material to access sugars for millennia, so plants have evolved to have very sophisticated cell structures that make accessing these sugars difficult," said Steven Brown, staff microbiologist in the Biosciences Division and one of the inventors of the improved Z. mobilis strain.

Currently, biomass materials like corn stover and switchgrass must undergo a series of pretreatments to loosen the cellular structure enough to extract the sugar cellulose. Brown said these treatments add new challenges because, although they are necessary, they create a range of chemicals known as inhibitors that stall or stop microorganisms like Z. mobilis from performing the fermentation.

"There are two ways to combat recalcitrance, or the difficulty created by the inhibitors," Brown said. "One way is to remove the inhibitors, but this method is very expensive and would not help biofuels become cost-competitive with gasoline. The second way is what we do, which is to develop microorganisms that are more tolerant of the inhibitors."

The non-mutated strain of Z. mobilis, for instance, cannot grow in the presence of one of the predominant inhibitors, acetate. However, when gene nhaA is over-expressed by inserting a slice of DNA containing the gene into the non-mutated strain, the bacterium can withstand acetate in its environment.

Brown and lead author Shihui Yang did not stop with Z. mobilis but looked at related genes in other microorganisms and found that the method translates in different organisms.

"We took this gene and integrated it into a strain of yeast, and the improvements carried over into the yeast," Yang said.

Brown says this method of processing biomass for ethanol has the potential to become a "tool kit" — a combination of mutant genes that reduce the impact of specific inhibitors. The tool kit could expand quickly, too, as scientists now have more advanced DNA sequencing technology available to identify and resequence genes.

"The DNA sequencer we used was unavailable as recently as five years ago, and it has unprecedented sequencing capabilities. It is 4,000 times more powerful than the machine that finished sequencing the human genome almost a decade ago," Brown said.

ORNL microbiologists are currently sequencing other microorganisms used in biofuels production that could also be advantageous if genetically altered to resist different types of inhibitors.

"By looking at the behavioral response to the genetic changes in this bacteria, Zymomonas, we can then look forward to improving other bacteria," Yang said.

ORNL is managed by UT-Battelle for the Department of Energy's Office of Science.

Katie Freeman | EurekAlert!
Further information:
http://www.ornl.gov

Further reports about: DNA DNA sequencer Science TV Z. mobilis gasoline human genome

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>