Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene discovered for Weaver syndrome

16.12.2011
Scientists have found a gene that causes Weaver syndrome, a rare genetic disorder that typically causes large size at birth, tall stature, developmental delay during childhood, and intellectual disability. Published today in the American Journal of Human Genetics, the discovery means that testing the EZH2 gene for mutations could help families who are seeking a diagnosis for their child.

"For the families among whom we identified the gene, this discovery definitively brings the diagnostic odyssey to a close ¨C it's DNA confirmation that their children have Weaver syndrome," says Dr. William Gibson, the study's lead investigator. Dr. Gibson is a clinician scientist at the Child & Family Research Institute at BC Children's Hospital and an assistant professor in the Department of Medical Genetics at the University of British Columbia (UBC).

"Our discovery enables DNA-based diagnostic testing for this particular disease," says Dr. Gibson. "For physicians who suspect Weaver syndrome in one of their patients, we can now confirm it if we find mutations in EZH2. There may still be other Weaver syndrome genes, and we need to study more families to be sure."

Presently, doctors diagnose Weaver syndrome by assessing a child's face, growth, skeleton and other clinical features. People with Weaver syndrome have an oversized head, typical facial features, problems with muscle tone and joints, and differences in the way their skeleton matures. Mutations in the NSD1 gene, which normally causes a rare disease called Sotos syndrome, are also known to cause Weaver syndrome in some cases. There may be other genes involved in Weaver syndrome that are yet to be discovered.

"Now we have an answer for these families and we are also in a position to provide answers to other families affected by this rare and difficult disease," says Dr. Gibson. He is available to see new patients clinically for diagnosis of Weaver syndrome. As a result of this discovery, Dr. Gibson's team now offers sequencing of the EZH2 gene on a research basis in partnership with the Ottawa Hospital Research Institute. Dr. Gibson's team can be contacted by email at wtgibson@cfri.ubc.ca.

Traditionally, hunting for a disease-causing gene has relied on tracking a gene throughout a family's history. However, Weaver syndrome usually occurs only once in a family, as it is thought to be caused by a new genetic mutation in the sperm or egg that conceived the child. For this study, the investigators sought patients with Weaver syndrome from Canada and the United States. They approached Dr. David Weaver, who discovered the syndrome in 1974 and is professor emeritus of Medical and Molecular Genetics at Indiana University School of Medicine in Indianapolis. In two families that Dr. Weaver had examined, the Canadian team looked for brand new genetic mutations by comparing the DNA of affected children to DNA from their unaffected parents. Once the investigators identified EZH2 as a candidate gene, they sequenced it in DNA samples from a third Canadian family. They confirmed that an EZH2 mutation was in this third family's child but not in either of her healthy parents.

EZH2 is a cancer gene that is known to be mutated in leukemia, B-cell lymphomas and some other blood cancers. The gene helps control how DNA is packaged around specific proteins, which in turn helps to regulate which groups of genes are turned off and on.

"Our finding illuminates an emerging area of biology that links developmental syndromes and cancer," says Dr. Gibson. "It appears that some mutations in EZH2, if these occur early in life, produce developmental syndromes such as Weaver syndrome, whereas mutations in the same gene that occur later in life can produce cancer."

Dr. Steven Jones is the study's senior author who led the DNA sequencing and bioinformatics. He is head of bioinformatics and associate director of the Michael Smith Genome Sciences Centre at BC Cancer Agency, professor in the UBC Department of Medical Genetics, and professor, Molecular Biology & Biochemistry at Simon Fraser University (SFU).

This research evolved out of a new consortium called FORGE Canada (Finding of Rare Disease Genes in Canada). It is funded by Genome Canada, Canadian Institutes of Health Research, Ontario Genomics Institute, Genome Qu¨¦bec and Genome British Columbia. Dr. Gibson is also supported by the Child & Family Research Institute (CFRI), and Dr. Steven Jones is supported by the Michael Smith Foundation for Health Research.

CFRI conducts discovery, clinical and applied research to benefit the health of children and families. It is the largest institute of its kind in Western Canada. CFRI works in close partnership with UBC, BC Children's Hospital and Sunny Hill Health Centre for Children, BC Women's Hospital & Health Centre, agencies of Provincial Health Services Authority (PHSA) and BC Children's Hospital Foundation. CFRI has additional important relationships with the province's five regional health authorities and with BC academic institutions SFU, the University of Victoria, the University of Northern British Columbia, and the British Columbia Institute of Technology. For more information, visit www.cfri.ca.

BC Children's Hospital, an agency of PHSA, provides expert care for the province's most seriously ill or injured children, including newborns and adolescents. BC Children's is an academic health centre affiliated with UBC, SFU, and CFRI. For more information, please visit www.bcchildrens.ca.

BC Cancer Agency, an agency of PHSA, is committed to reducing the incidence of cancer, reducing the mortality from cancer, and improving the quality of life of those living with cancer. It provides a comprehensive cancer control program for the people of British Columbia by working with community partners to deliver a range of oncology services, including prevention, early detection, diagnosis and treatment, research, education, supportive care, rehabilitation and palliative care. For more information, visit www.bccancer.ca.

UBC is one of Canada's largest and most prestigious public research and teaching institutions, and one of only two Canadian institutions to be consistently ranked among the world's 40 best universities. Surrounded by the beauty of the Canadian West, it is a place that inspires bold, new ways of thinking that have helped make it a national leader in areas as diverse as community service learning, sustainability and research commercialization. UBC attracts $550 million per year in research funding from government, non©profit organizations and industry through 7,000 grants. For more information, visit www.ubc.ca

Jennifer Kohm | EurekAlert!
Further information:
http://www.cfri.ca

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>