Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New gene discovered: sheds light on the evolution of life on Earth

An international study, based on a doctoral thesis conducted at the University of Haifa, has discovered how a newly discovered gene played a central role in the transition of aquatic plants to land plants a process that led to life on land as we know it today.

A chance discovery of a genetic mutation in wild barley that grows in Israel's Judean Desert, in the course of a doctoral study at the University of Haifa, has led to an international study deciphering evolution of life on land. The study has been published in the prestigious journal PNAS. "Life on Earth began in the water, and in order for plants to rise above water to live on land, they had to develop a cuticle membrane that would protect them from uncontrolled evaporation and dehydration. "In our study we discovered a completely new gene that along with other genes contributes to the formation of this cuticle," said Prof. Eviatar (Eibi) Nevo of the Institute of Evolution of the University of Haifa, who took part in the study.

In the course of doctoral research carried out by Guoxiong Chen, which began at the University of Haifa in 2000 under the supervision of Prof. Nevo, the Chinese doctoral student found a mutation of wild barley in the Judean Desert that was significantly smaller than regular wild barley. It was found that this mutation causes an abnormal increase in water loss because of a disruption in the production of the plant's cutin that is secreted from the epidermal cells and is a component in the plant's cuticle that reduces water loss and prevents the plant's dehydration.

Guoxiong Chen has since returned to China and achieved full professorship while continuing his study of the Judean Desert's wild barley for which he enrolled an international team of scholars from China, Japan, Switzerland and Israel. After about eight years of research, this team discovered a new gene that contributes to the production of cutin, which is found in all land plants but is either nonexistent or present in tiny amounts in aquatic plants. Chen called this new gene Eibi1, in honor of his supervisor, Prof. Nevo.

"This is one of the genes that contributed to the actual eventuality of life on land as we know it today. It is a key element in the adaptation process that aquatic plants underwent in order to live on land," explained Prof. Nevo. Besides the evolutionary importance of this new gene, it is also of value in the future enhancement of cereals. According to Prof. Nevo, once we can fully understand the mechanism behind the production of cutin and discover genetic variants of the Eibi1 gene, we will have the ability to enhance the cuticle formation of wheat and barley species so as to make them more resistant to water loss and more durable in the dryer conditions on land. "Genetic enhancement of cultivated plants to make them durable in dry and saline conditions can increase food production around the world," the researcher concluded.

For more information:
Rachel Feldman
Division of Marketing and Media
University of Haifa

Rachel Feldman | University of Haifa
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>