Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gender Stereotypes About Math Develop as Early as Second Grade

15.03.2011
Children express the stereotype that mathematics is for boys, not for girls, as early as second grade, according to a new study by University of Washington researchers. And the children applied the stereotype to themselves: boys identified themselves with math whereas girls did not.

The “math is for boys” stereotype has been used as part of the explanation for why so few women pursue science, mathematics and engineering careers. The cultural stereotype may nudge girls to think that “math is not for me,” which can affect what activities they engage in and their career aspirations.

The new study, published in the March/April issue of Child Development, suggests that, for girls, lack of interest in mathematics may come from culturally-communicated messages about math being more appropriate for boys than for girls, the researchers said.

But the stereotype that girls don’t do math was odd to lead author Dario Cvencek, who was born and raised in the former Yugoslavia. “We didn’t have that stereotype where I grew up,” said Cvencek, a postdoctoral fellow at the UW Institute for Learning & Brain Sciences. “People there thought that math went with girls just as much as it did with boys.”

Cvencek and his co-authors wanted to examine whether American children have adopted the cultural stereotype that math is for boys during elementary-school years, and if so, whether they apply that stereotype to themselves.

Math self-concept – how much youngsters identify themselves with math, as in “math is for me” – has been left out of previous studies of the math-gender stereotype. Even though other studies using self-report measures show that boys and girls alike make the “math is for boys” linkage, the studies don’t distinguish between whether girls simply know about the math-gender stereotype but aren’t fazed by it, or are instead applying it to themselves so that it affects their identity, interests and actions.

The researchers used a computer-based categorization test, the Implicit Association Test, to assess how school children link math with gender. In adults, the test can predict actual math performance and real-world choices.

The adult test, developed by UW psychology professor Anthony Greenwald, also a co-author of the research, probes implicit self-concepts, stereotypes and attitudes. It captures stereotypes by measuring, for example, how strongly respondents associate various academic subjects with either masculine or feminine connotations. The stronger the stereotype is, the faster the response.

The UW researchers adapted the adult Implicit Association Test for children and used it to examine three concepts:
- Gender identity, or the association of “me” with male or female.
- Math-gender stereotype, or the association of math with male or female.
- Math self-concept, or the association of “me” with math or reading.
The kids, 247 children (126 girls and 121 boys) in grades one through five in Seattle-area schools, sat in front of a large-screen laptop computer and used an adapted keyboard to sort words into categories.

In the math-gender stereotype test, for example, children sorted four kinds of words: boy names, girl names, math words and reading words. Children expressing the math-gender stereotype should be faster to sort words when boy names are paired with math words and girl names are paired with reading words. Similarly, they should be slower to respond when math words are paired with girl names and reading words are paired with boy names.

As early as second grade, the children demonstrated the American cultural stereotype for math: boys associated math with their own gender while girls associated math with boys. In the self-concept test, boys identified themselves with math more than girls did.

The researchers also used self-report tests and on all three concepts found similar responses to the Implicit Association Test.

“Our results show that cultural stereotypes about math are absorbed strikingly early in development, prior to ages at which there are gender differences in math achievement,” said co-author Andrew Meltzoff, a UW psychology professor and co-director of the UW Institute for Learning & Brain Sciences. Meltzoff holds the Job and Gertrud Tamaki Endowed Chair at UW.

Parental and educational practices aimed at enhancing girls’ self-concepts for math might be beneficial as early as elementary school, when the youngsters are already beginning to develop ideas about who does math, the researchers said.

“Children have their antennae up and are assimilating the stereotypes exhibited by parents, educators, peers, games and the media,” Meltzoff said. “Perhaps if we can depict math as being equally for boys and girls, we can help broaden the interests and aspirations of all our children.”

The research was funded by a National Science Foundation grant to the LIFE Science of Learning Center.

For more information, contact Meltzoff at 206-685-2045 or meltzoff@uw.edu, Cvencek at 206-543-8029 or dario1@uw.edu, and Greenwald at 206-543-7227 or agg@uw.edu.

For images, contact Molly McElroy at 206-543-2580 or mollywmc@uw.edu. Or use photo here with credit: http://www.flickr.com/photos/wwworks/3597217248/

UW Institute for Learning & Brain Sciences: http://ilabs.washington.edu/

To learn more about expanding participation in math and science, read a National Academies report: http://www.nap.edu/catalog.php?record_id=12999#description

Molly McElroy | Newswise Science News
Further information:
http://www.uw.edu

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>