Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gender Stereotypes About Math Develop as Early as Second Grade

15.03.2011
Children express the stereotype that mathematics is for boys, not for girls, as early as second grade, according to a new study by University of Washington researchers. And the children applied the stereotype to themselves: boys identified themselves with math whereas girls did not.

The “math is for boys” stereotype has been used as part of the explanation for why so few women pursue science, mathematics and engineering careers. The cultural stereotype may nudge girls to think that “math is not for me,” which can affect what activities they engage in and their career aspirations.

The new study, published in the March/April issue of Child Development, suggests that, for girls, lack of interest in mathematics may come from culturally-communicated messages about math being more appropriate for boys than for girls, the researchers said.

But the stereotype that girls don’t do math was odd to lead author Dario Cvencek, who was born and raised in the former Yugoslavia. “We didn’t have that stereotype where I grew up,” said Cvencek, a postdoctoral fellow at the UW Institute for Learning & Brain Sciences. “People there thought that math went with girls just as much as it did with boys.”

Cvencek and his co-authors wanted to examine whether American children have adopted the cultural stereotype that math is for boys during elementary-school years, and if so, whether they apply that stereotype to themselves.

Math self-concept – how much youngsters identify themselves with math, as in “math is for me” – has been left out of previous studies of the math-gender stereotype. Even though other studies using self-report measures show that boys and girls alike make the “math is for boys” linkage, the studies don’t distinguish between whether girls simply know about the math-gender stereotype but aren’t fazed by it, or are instead applying it to themselves so that it affects their identity, interests and actions.

The researchers used a computer-based categorization test, the Implicit Association Test, to assess how school children link math with gender. In adults, the test can predict actual math performance and real-world choices.

The adult test, developed by UW psychology professor Anthony Greenwald, also a co-author of the research, probes implicit self-concepts, stereotypes and attitudes. It captures stereotypes by measuring, for example, how strongly respondents associate various academic subjects with either masculine or feminine connotations. The stronger the stereotype is, the faster the response.

The UW researchers adapted the adult Implicit Association Test for children and used it to examine three concepts:
- Gender identity, or the association of “me” with male or female.
- Math-gender stereotype, or the association of math with male or female.
- Math self-concept, or the association of “me” with math or reading.
The kids, 247 children (126 girls and 121 boys) in grades one through five in Seattle-area schools, sat in front of a large-screen laptop computer and used an adapted keyboard to sort words into categories.

In the math-gender stereotype test, for example, children sorted four kinds of words: boy names, girl names, math words and reading words. Children expressing the math-gender stereotype should be faster to sort words when boy names are paired with math words and girl names are paired with reading words. Similarly, they should be slower to respond when math words are paired with girl names and reading words are paired with boy names.

As early as second grade, the children demonstrated the American cultural stereotype for math: boys associated math with their own gender while girls associated math with boys. In the self-concept test, boys identified themselves with math more than girls did.

The researchers also used self-report tests and on all three concepts found similar responses to the Implicit Association Test.

“Our results show that cultural stereotypes about math are absorbed strikingly early in development, prior to ages at which there are gender differences in math achievement,” said co-author Andrew Meltzoff, a UW psychology professor and co-director of the UW Institute for Learning & Brain Sciences. Meltzoff holds the Job and Gertrud Tamaki Endowed Chair at UW.

Parental and educational practices aimed at enhancing girls’ self-concepts for math might be beneficial as early as elementary school, when the youngsters are already beginning to develop ideas about who does math, the researchers said.

“Children have their antennae up and are assimilating the stereotypes exhibited by parents, educators, peers, games and the media,” Meltzoff said. “Perhaps if we can depict math as being equally for boys and girls, we can help broaden the interests and aspirations of all our children.”

The research was funded by a National Science Foundation grant to the LIFE Science of Learning Center.

For more information, contact Meltzoff at 206-685-2045 or meltzoff@uw.edu, Cvencek at 206-543-8029 or dario1@uw.edu, and Greenwald at 206-543-7227 or agg@uw.edu.

For images, contact Molly McElroy at 206-543-2580 or mollywmc@uw.edu. Or use photo here with credit: http://www.flickr.com/photos/wwworks/3597217248/

UW Institute for Learning & Brain Sciences: http://ilabs.washington.edu/

To learn more about expanding participation in math and science, read a National Academies report: http://www.nap.edu/catalog.php?record_id=12999#description

Molly McElroy | Newswise Science News
Further information:
http://www.uw.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>