Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gender-specific disease risks start in the womb

07.05.2010
Disease risk in later life differs for women and men -- scientists at the Power of Programming Conference present evidence to demonstrate this may start in the womb

Pregnancy places competing demands on a mother's physiology: Her body wants to produce a strong healthy baby but not at the expense of her own health. Some of the genes that she passes on to her child therefore try to protect her own body from excessive demands from her child.

These so-called "imprinted genes" inherited from the father however do not show the same restraint – their goal is to get as many resources for the fetus as possible. Evidence that this battle of the imprinted genes might be at the root of later life disease processes will be presented at the International Conference The Power of Programming in Munich on 6 to 8 May, organised by the EC-funded Early Nutrition Programming Project (EARNEST).

"The imprinted genes derived from the father are greedy whilst those from the mother are conservative in their needs to ensure future reproductive success", said Dr. Miguel Constancia from the University of Cambridge, England. "We have found evidence that imprinted genes play important roles in the control of endocrine functions of the placenta. These placental adaptations have marked effects on nutrient delivery to the fetus, resulting in the programming of homeostatic mechanisms with metabolic consequences extending to adulthood, for example for type 2 diabetes susceptibility."

There is evidence that some programming effects are different in male and female offspring. Dr. Rachel Dakin from the University of Edinburgh, Scotland, shows how maternal obesity is associated with sex-specific programming effects in young adult mice. Female offspring of obese mothers had raised blood insulin levels, whilst male offspring did not. Male offspring did have alterations in the expression of liver genes important in lipid and glucocorticoid metabolism.

Professor Claudine Junien from the Institut National de Recherche Agronomique (INRA) in France says: "For me a gene, a cell and even a sex does not think and has no intelligent design. Instead it reacts to diverse environments and situations according to what its build-up can afford, pushing in one direction or another (or several at a time). The limits to which it can go without going awry or dying have been established progressively throughout the slow and long process of evolution, with different genetic backgrounds throughout the world depending on the diversity of experiences over the ages.

We have data showing that gene expression and DNA methylation are sexually dimorphic in male and female placentae under normal/control conditions. Surprisingly, in stressful conditions, such as a high fat diet or low calorie diet, or maternal overweight/obesity - the male and female placentae do not use the same strategies: they use different gene pathways and networks to cope with the stress.

Does this directly lead to different outcomes? It may lead to sex-dependent differences in the outcome of programming with long lasting effects. Alternatively, it may be that metaphorically speaking males climb the mountain taking the north face while females take the south face - but they ultimately reach the same peak after using these different paths."

Professor Ricardo Closa Monasterolo from the University Rovira I Virgili of Tarragona, Italy, presents work that suggested that infant boys and girls might have different responses to lower or higher protein diets. Females given higher protein formula milk had higher IGF-1 levels than males, whilst males showed higher C-peptide/creatinine levels compared to females. The significance of lower or higher protein diets has also been examined in the EU Childhood Obesity Project (CHOP) co-ordinated by Professor Berthold Koletzko of Ludwig-Maximilians-Universität (LMU) in Munich. Starting in 1990, over 1,000 infants were followed. The first results show that, after 2 years, the infants fed a formula milk with a lower protein content – closer to the composition of breast milk - weighed significantly less than those on higher protein formula, with their weights being more similar to those of breast fed infants. These differences emerged by 6 months of age and persisted, even after the intervention ceased and the children went onto similar diets. The researchers predict that these low protein induced differences in early growth would reduce obesity at 14 to 16 years of age by 13%.

Koletzko, who is also the Co-ordinator of the EARNEST project said, "This is a new and exciting area of research which suggests that some of the differences in disease risk seen in men and women in later life might be explained by different responses to programming effects in early life."

Rhonda Smith | EurekAlert!
Further information:
http://www.uni-muenchen.de

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>