Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gender-specific disease risks start in the womb

07.05.2010
Disease risk in later life differs for women and men -- scientists at the Power of Programming Conference present evidence to demonstrate this may start in the womb

Pregnancy places competing demands on a mother's physiology: Her body wants to produce a strong healthy baby but not at the expense of her own health. Some of the genes that she passes on to her child therefore try to protect her own body from excessive demands from her child.

These so-called "imprinted genes" inherited from the father however do not show the same restraint – their goal is to get as many resources for the fetus as possible. Evidence that this battle of the imprinted genes might be at the root of later life disease processes will be presented at the International Conference The Power of Programming in Munich on 6 to 8 May, organised by the EC-funded Early Nutrition Programming Project (EARNEST).

"The imprinted genes derived from the father are greedy whilst those from the mother are conservative in their needs to ensure future reproductive success", said Dr. Miguel Constancia from the University of Cambridge, England. "We have found evidence that imprinted genes play important roles in the control of endocrine functions of the placenta. These placental adaptations have marked effects on nutrient delivery to the fetus, resulting in the programming of homeostatic mechanisms with metabolic consequences extending to adulthood, for example for type 2 diabetes susceptibility."

There is evidence that some programming effects are different in male and female offspring. Dr. Rachel Dakin from the University of Edinburgh, Scotland, shows how maternal obesity is associated with sex-specific programming effects in young adult mice. Female offspring of obese mothers had raised blood insulin levels, whilst male offspring did not. Male offspring did have alterations in the expression of liver genes important in lipid and glucocorticoid metabolism.

Professor Claudine Junien from the Institut National de Recherche Agronomique (INRA) in France says: "For me a gene, a cell and even a sex does not think and has no intelligent design. Instead it reacts to diverse environments and situations according to what its build-up can afford, pushing in one direction or another (or several at a time). The limits to which it can go without going awry or dying have been established progressively throughout the slow and long process of evolution, with different genetic backgrounds throughout the world depending on the diversity of experiences over the ages.

We have data showing that gene expression and DNA methylation are sexually dimorphic in male and female placentae under normal/control conditions. Surprisingly, in stressful conditions, such as a high fat diet or low calorie diet, or maternal overweight/obesity - the male and female placentae do not use the same strategies: they use different gene pathways and networks to cope with the stress.

Does this directly lead to different outcomes? It may lead to sex-dependent differences in the outcome of programming with long lasting effects. Alternatively, it may be that metaphorically speaking males climb the mountain taking the north face while females take the south face - but they ultimately reach the same peak after using these different paths."

Professor Ricardo Closa Monasterolo from the University Rovira I Virgili of Tarragona, Italy, presents work that suggested that infant boys and girls might have different responses to lower or higher protein diets. Females given higher protein formula milk had higher IGF-1 levels than males, whilst males showed higher C-peptide/creatinine levels compared to females. The significance of lower or higher protein diets has also been examined in the EU Childhood Obesity Project (CHOP) co-ordinated by Professor Berthold Koletzko of Ludwig-Maximilians-Universität (LMU) in Munich. Starting in 1990, over 1,000 infants were followed. The first results show that, after 2 years, the infants fed a formula milk with a lower protein content – closer to the composition of breast milk - weighed significantly less than those on higher protein formula, with their weights being more similar to those of breast fed infants. These differences emerged by 6 months of age and persisted, even after the intervention ceased and the children went onto similar diets. The researchers predict that these low protein induced differences in early growth would reduce obesity at 14 to 16 years of age by 13%.

Koletzko, who is also the Co-ordinator of the EARNEST project said, "This is a new and exciting area of research which suggests that some of the differences in disease risk seen in men and women in later life might be explained by different responses to programming effects in early life."

Rhonda Smith | EurekAlert!
Further information:
http://www.uni-muenchen.de

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>