Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gasoline additives from sugar

11.08.2016

Fuel additives such as isooctane have so far been produced from mineral oil. Commissioned by the French-German company Global Bioenergies, the Fraunhofer Center for Chemical-Biotechnological Processes CBP in Leuna will soon be producing biobased additives for gasoline. The source is bio-isobutene, which is obtained biotechnically from sugar.

In order to prevent the air-fuel mixture in the gasoline engine from self-igniting prematurely, additives are included with the fuel to increase the knock resistance. In a project funded by the German Federal Ministry of Education and Research (BMBF) the French-German company Global Bioenergies now aims to produce two such additives, isooctane and ETBE (ethyl-tert-butyl ether), for the first time from purely renewable ressources.


Pilot plants for the chemical conversion and processing of fuels and fuel additives: High-pressure flow tube reactor.

Fraunhofer CBP


High-pressure stirred tank reactor at Fraunhofer CBP.

Fraunhofer CBP

The Fraunhofer Center for Chemical-Biotechnological Processes CBP in Leuna will develop and validate the processes for Global Bioenergies using the equipment available at CBP through to industrial scale.

The raw material for the biobased fuel additives is biobased isobutene, a hydrocarbon, from which plastics and elastomers can also be synthesized. From autumn 2016 it will be produced in a pre-industrial pilot plant, which Global Bioenergies have installed at Fraunhofer CBP over the past few months.

The plant is the first worldwide to produce isobutene in a purely biotechnical process from sugars, which can be obtained from different renewable sources such as agricultural biomass and forestry residues. In a 5.000-liter fermenter bacteria convert such sugar into the gaseous hydrocarbon.

Chemical conversion of isobutene to isooctane

In fact, isooctane has been synthesized from isobutene for years in the chemical industry. “The challenge is now to find out how the established chemical processes can be transferred to the biobased source material,” says Dr. Daniela Pufky-Heinrich, who is heading the project at Fraunhofer CBP. “Substances could enter the product, for example via the plant-based raw material and the biotechnical production process; these substances could act as a catalyst poison or interfere with the combustion process in the engine,” the chemist points out.

That is why it is important to design all the separate steps in the process with a view to a cost-effective overall process, from the sugar by way of the biobased isobutene through to the fuel additive. “This means that we have to investigate every single parameter and, if necessary, modify each one, for example our purification strategy for the intermediates and the end product,” says Pufky-Heinrich.

Then it is a question of scaling up the optimized overall process from the lab via the technical testing stage to the pilot scale. “Parallel to this, we will supply sample quantities of approx. 100 kilograms for application testing in the automotive and fuel industry,” says Pufky-Heinrich.

The Fraunhofer researchers also intend to examine various procedures for the chemical production of ETBE, which is synthesized from biobased isobutene and ethanol. This gasoline additive is first produced from batches of the biotechnological isobutene production from the Global Bioenergies pilot plant in Pomacle, France.

The hydrothermal reactor units available in the Chemical Process Group at Fraunhofer CBP will be used for the chemical conversion; the thermal treatment units are used for the subsequent purification.

Dr. Claudia Vorbeck | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB
Further information:
http://www.igb.fraunhofer.de/

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>