Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gasoline additives from sugar

11.08.2016

Fuel additives such as isooctane have so far been produced from mineral oil. Commissioned by the French-German company Global Bioenergies, the Fraunhofer Center for Chemical-Biotechnological Processes CBP in Leuna will soon be producing biobased additives for gasoline. The source is bio-isobutene, which is obtained biotechnically from sugar.

In order to prevent the air-fuel mixture in the gasoline engine from self-igniting prematurely, additives are included with the fuel to increase the knock resistance. In a project funded by the German Federal Ministry of Education and Research (BMBF) the French-German company Global Bioenergies now aims to produce two such additives, isooctane and ETBE (ethyl-tert-butyl ether), for the first time from purely renewable ressources.


Pilot plants for the chemical conversion and processing of fuels and fuel additives: High-pressure flow tube reactor.

Fraunhofer CBP


High-pressure stirred tank reactor at Fraunhofer CBP.

Fraunhofer CBP

The Fraunhofer Center for Chemical-Biotechnological Processes CBP in Leuna will develop and validate the processes for Global Bioenergies using the equipment available at CBP through to industrial scale.

The raw material for the biobased fuel additives is biobased isobutene, a hydrocarbon, from which plastics and elastomers can also be synthesized. From autumn 2016 it will be produced in a pre-industrial pilot plant, which Global Bioenergies have installed at Fraunhofer CBP over the past few months.

The plant is the first worldwide to produce isobutene in a purely biotechnical process from sugars, which can be obtained from different renewable sources such as agricultural biomass and forestry residues. In a 5.000-liter fermenter bacteria convert such sugar into the gaseous hydrocarbon.

Chemical conversion of isobutene to isooctane

In fact, isooctane has been synthesized from isobutene for years in the chemical industry. “The challenge is now to find out how the established chemical processes can be transferred to the biobased source material,” says Dr. Daniela Pufky-Heinrich, who is heading the project at Fraunhofer CBP. “Substances could enter the product, for example via the plant-based raw material and the biotechnical production process; these substances could act as a catalyst poison or interfere with the combustion process in the engine,” the chemist points out.

That is why it is important to design all the separate steps in the process with a view to a cost-effective overall process, from the sugar by way of the biobased isobutene through to the fuel additive. “This means that we have to investigate every single parameter and, if necessary, modify each one, for example our purification strategy for the intermediates and the end product,” says Pufky-Heinrich.

Then it is a question of scaling up the optimized overall process from the lab via the technical testing stage to the pilot scale. “Parallel to this, we will supply sample quantities of approx. 100 kilograms for application testing in the automotive and fuel industry,” says Pufky-Heinrich.

The Fraunhofer researchers also intend to examine various procedures for the chemical production of ETBE, which is synthesized from biobased isobutene and ethanol. This gasoline additive is first produced from batches of the biotechnological isobutene production from the Global Bioenergies pilot plant in Pomacle, France.

The hydrothermal reactor units available in the Chemical Process Group at Fraunhofer CBP will be used for the chemical conversion; the thermal treatment units are used for the subsequent purification.

Dr. Claudia Vorbeck | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB
Further information:
http://www.igb.fraunhofer.de/

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

NASA Protects its super heroes from space weather

17.08.2017 | Physics and Astronomy

Spray-on electric rainbows: Making safer electrochromic inks

17.08.2017 | Materials Sciences

Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

17.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>