Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What is the function of NOD2 in colonic epithelial cells?

27.10.2008
NOD2 is a cytosolic pattern recognition receptor similar in structure and function to Toll like receptors (TLRs).

It can recognize and respond to a component found in the cell wall of bacteria, muramyl dipeptide (MDP), and has been shown to play an important role in the innate immune response of macrophages to bacterial infections. However, the function of NOD2 in the gastrointestinal tract and the colon and its contribution of mutant NOD2 alleles to the pathogenesis of CD is still unclear.

A research article to be published on October 14, 2008 in the World Journal of Gastroenterology addresses this question. The research team led by Professor Simon Carding from the University of Leeds used in vivo and in vitro studies to analyse the specific function of NOD2 in colonic epithelial cells.

They found that NOD2 was predominantly expressed in epithelial cells at the base of colonic crypts, where the majority of cells are undergoing proliferation. In addition, NOD2's ligand, MDP, stimulated the growth of in vitro cultures of colonic epithelial cells. Further evidence for the role of NOD2 in cell growth and survival was obtained using NOD2-deficient mice and RNA interference. In the absence of NOD2 colonic epithelial cells proliferation was reduced and apoptosis increased, which were exacerbated when challenged with the enteric pathogen, Salmonella typhimurium. Surprisingly the ability of NOD2 to promote cell growth and survival was also apparent in the colorectal cancer cells as the introduction of siRNAs specific for NOD2 resulted in an 80% decrease in survival compared to cells treated with control NOD2 siRNA.

These results highlight for the first time the importance of NOD2 in the regulation of epithelial cell growth and survival and consequently the integrity of the intestinal epithelial cell barrier, that is required for protection against pathogenic and opportunistic bacterial infections. further investigation is needed to assess if these receptors work alongside each other in the regulation of epithelial cell homeostasis.

Lai-Fu Li | EurekAlert!
Further information:
http://www.wjgnet.com
http://www.wjgnet.com/1007-9327/14/5834.asp

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>