Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Full Woodland Strawberry Genome Sequenced

27.12.2010
Weizmann Institute researchers, together with an international team:
Sequence the Full Woodland Strawberry Genome

In a collaborative effort involving 74 researchers from 38 research institutes, scientists have produced the full genome of a wild strawberry plant. The research appeared today in Nature Genetics. Drs. Asaph Aharoni and Avital Adato of the Weizmann Institute’s Plant Sciences Department were the sole Israeli scientists participating in the project, but they made a major contribution in mapping the genes and gene families responsible for the strawberry’s flavor and aroma.

The woodland strawberry (Fragaria vesca) is closely related to garden-variety cultivated strawberry. The fruit of this berry contains large amounts of anti-oxidants (mainly tannins, the substances that give wine their astringency), as well as vitamins A, C and B12 and minerals – potassium, calcium and magnesium. In addition, the strawberry fruit is uniquely rich in substances for flavor and aroma.

Participation in this project is something of a circle closer for Aharoni: For a number of years he has been investigating the metabolic pathways of ripening, in which the substance that give the fruit its flavor and aroma are produced. Aharoni was one of the first to use biological chips to analyze the genetic networks involved in creating these substances. He has also conducted a comparative analysis of these genes in wild and cultivated plants, looking for the differences. Now that the full genome of the wild strawberry plant is available for research, he is able not only to conduct deeper and broader investigations, but to shed new light on some of his past findings. Thus, for instance, in carrying out a computerized analysis of the woodland strawberry genome, Adato was able to place an enzyme that Aharoni had previously characterized in a relatively small enzyme family. This small family is responsible for the production of a large number of aromatic substances, and the finding helped clarify their means of production.

Aharoni hopes that, among other things, the newly sequenced genome will help scientists understand how to return the flavors and aromas that have been lost over years of breeding in the cultivated cousin of the wild strawberry. The intense, concentrated aroma and flavor of the woodland strawberry are, he says, something to aspire to.

The woodland strawberry has now joined the elite list of plants, including rice, grapes and soya, which have had their genomes sequenced. The length of the genome is about 240 million bases and contains around 35,000 genes. (In comparison, the human genome has three billion bases, but only 23,000 genes.) The woodland strawberry genome is relatively short, simple and easy to manipulate, and the plant grows quickly and easily. These qualities make it an ideal model plant that might provide insight into other related agricultural crops (the rose family) including cultivated strawberries, and such fruit trees as apples peaches, cherries and almonds.

Dr. Asaph Aharoni’s research is supported by the De Benedetti Foundation-Cherasco 1547; the Minna James Heineman Stiftung; the Willner Family Foundation; and Roberto and Renata Ruhman, Brazil. Dr. Aharoni is the incumbent of the Adolpho and Evelyn Blum Career Development Chair of Cancer Research.

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,600 scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.

Weizmann Institute news releases are posted on the World Wide Web at http://wis-wander.weizmann.ac.il, and are also available at http://www.eurekalert.org.

Batya Greenman | idw
Further information:
http://wis-wander.weizmann.ac.il
http://www.nature.com/ng/journal/vaop/ncurrent/full/ng.740.html

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Satellite-based Laser Measurement Technology against Climate Change

17.01.2017 | Machine Engineering

Studying fundamental particles in materials

17.01.2017 | Physics and Astronomy

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>