Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From fruit fly wings to heart failure. Why Not(ch)?

10.12.2009
EMBL scientists identify key signalling pathway for heart development and healing

Almost a century after it was discovered in fruit flies with notches in their wings, the Notch signalling pathway may come to play an important role in the recovery from heart attacks.

In a study published today in Circulation Research, scientists at the European Molecular Biology Laboratory (EMBL) in Monterotondo, Italy, are the first to prove that this signalling pathway targets heart muscle cells and thus reveal its crucial role in heart development and repair.

The Notch pathway is a molecular mechanism through which cells communicate with each other. Scientists in Nadia Rosenthal’s group at EMBL used sophisticated genetic mouse models to uncover critical roles for this pathway in heart muscle cells. When they inactivated Notch specifically in the heart muscle precursor cells of early mouse embryos, the scientists discovered that the mice developed heart defects. Curiously, increasing Notch signalling in the heart muscle cells of older embryos had the same detrimental effect, uncovering different requirements for Notch as development proceeds.

“The cardiac malformations we observed are characteristic of Alagille syndrome, a human congenital disorder,” said first author Paschalis Kratsios. “Therefore, our findings could help to explain the cardiac symptoms associated with Alagille syndrome and related forms of congenital heart disease.”

Intriguingly, the scientists were able to improve the cardiac function and survival rate of adult mice that had suffered heart attacks by re-activating Notch, suggesting new therapeutic approaches to help the heart recover from damage.

“Overall, these results highlight the importance of timing and context in biological communication mechanisms” Nadia Rosenthal concludes: “Our findings also lend support to the notion that, in certain situations, redeployment of embryonic signalling pathways could prove beneficial for tissue regeneration in the adult.”

Sonia Furtado | EMBL
Further information:
http://www.embl.org
http://www.embl.de/aboutus/communication_outreach/media_relations/2009/091210_Monterotondo/index.html

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>