Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fruit Flies on Methamphetamine Die Largely as a Result of Anorexia

01.08.2012
A new study finds that, like humans, fruit flies exposed to methamphetamine drastically reduce their food intake and increase their physical activity. The study, which tracked metabolic and behavioral changes in fruit flies on meth, indicates that starvation is a primary driver of methamphetamine-related death in the insects.
The new findings are described in The Journal of Toxicological Sciences.
The abuse of methamphetamine can have significant harmful side effects in humans. It burdens the body with toxic metabolic byproducts and weakens the heart, muscles and bones. It alters energy metabolism in the brain and kills brain cells.

Previous studies have shown that the fruit fly Drosophila melanogaster is a good model organism for studying the effects of methamphetamine on the body and brain. Researchers have found that meth exposure has similar toxicological effects in fruit flies and in humans and other mammals.

Some studies found that supplementing the fly’s diet with added glucose or other metabolic precursors slowed the damaging effects of exposure to methamphetamine, suggesting that meth has a profoundly negative effect on metabolism. Human meth users are known to crave sugary drinks, an indication that their sugar metabolism, too, is altered by methamphetamine use.

“But previous research has not spelled out exactly how methamphetamine use affects energy metabolism,” said University of Illinois entomology professor Barry Pittendrigh, who led the new study with postdoctoral researcher Kent Walters. “Either it alters the expression of metabolic genes and/or the function of proteins, or it changes behaviors related to feeding and activity.”

To test these competing hypotheses, the researchers monitored the fruit flies’ energy reserves and other byproducts of metabolism in response to meth

exposure – with and without the addition of dietary glucose. They also tracked how meth affected the flies’ feeding behavior, activity levels and respiration rates.

“We found that methamphetamine in the diet increased the flies’ locomotor activity two-fold and decreased their food consumption by 60 to 80 percent,” Walters said. Levels of triglycerides and glycogen, the two predominant energy storage molecules in animals, decreased steadily with meth exposure over a 48-hour period, suggesting that meth induced a negative caloric balance.

“This is very similar to what has been observed in humans for whom amphetamines can cause increased physical activity and decreased appetite,” Walters said.

The flies’ metabolic rate also declined in response to meth exposure, the opposite of what would be expected if metabolic changes were driving the depletion of triglycerides and glycogen.

Adding glucose to the diet slowed the rate of decline and death in meth-fed flies, Walters said.

“While methamphetamine exposure has a lot of other toxic effects that also undermine an animal’s health, we show that meth exposure leads to anorexia and the resulting caloric deficit exhausts the animal’s metabolic reserves,” he said. “This is likely a primary factor in meth-induced mortality.”

The new findings further support the usefulness of the fruit fly as a model system to study the effects of methamphetamines, Pittendrigh said.

The paper, “Methamphetamine causes anorexia in Drosophila melanogaster, exhausting metabolic reserves and contributing to mortality,” is available online: https://www.jstage.jst.go.jp/browse/jts

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>