Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Frog killer caught in the act

20.07.2010
Incidence of a lethal infectious disease moves at a rate of 30 kilometers per year

A killer has been caught in the act: the first before-and-after view of an infectious disease that led to an amphibian die-off has been released by the scientists who tracked it.

The results are published this week in the journal Proceedings of the National Academy of Sciences (PNAS).

Like a wave, incidence of the fungal disease that wipes out Central American frogs--chytridiomycosis--advances through the region's highlands at a rate of about 30 kilometers per year.

After the disappearance of Costa Rica's golden frogs in the 1980s, Karen Lips, a biologist at the University of Maryland, established a monitoring program at untouched sites in neighboring Panama.

Of the 63 species she identified during surveys conducted from 1998 to 2004 in Omar Torrijos National Park, located in El Copé, Panama, 25 species disappeared from the site in a subsequent epidemic.

As of 2008, none of these species had reappeared.

Were there additional species in the park not previously known to science?

To find out, the authors used a genetic technique called DNA barcoding to estimate that another 11 unnamed or "candidate" species were also present.

Combining field research and genetic information, the authors discovered that five of these unnamed species were also wiped out.

"Frog and salamander extinction due to the chytrid fungus is increasing worldwide," says Sam Scheiner, program director in the National Science Foundation (NSF)'s Division of Environmental Biology, which funded the research.

"These methods will allow a rapid measure of their diversity, so that we can monitor, and possibly mitigate, that extinction."

"It's sadly ironic that we are discovering new species nearly as fast as we're losing them," says Andrew Crawford, former postdoctoral fellow at the Smithsonian Tropical Research Institute (STRI) and member of the Círculo Herpetológico de Panamá, now at the University of the Andes in Colombia.

"Our DNA barcode data reveal new species even at this relatively well-studied site, yet the field sampling shows that many of these species new to science are already gone."

An epidemic that wipes out a whole group of organisms is like the fire that burned the famous library of Alexandria, the scientists say.

It destroys a huge amount of accumulated information about how life has coped with change in the past.

Species surveys are like counting the number of different titles in the library; a genetic survey is like counting the number of different words.

"When you lose the words, you lose the potential to make new books," says Lips.

"It's similar to the extinction of the dinosaurs. The areas where the disease has passed through are like graveyards. There's a void to be filled--and we don't know what will happen."

"This is the first time that we've used genetic barcodes--DNA sequences unique to each living organism--to characterize an entire amphibian community," said Eldredge Bermingham, STRI director and a co-author of the paper.

"The before-and-after approach we took with these frogs tells us exactly what was lost to this deadly disease--33 percent of their evolutionary history."

The Bay and Paul Foundation also funded the field work for the study. Collection permits were provided by Panama's Environmental Authority, ANAM.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

Further reports about: DNA DNA sequence Frog Lips STRI Science TV environmental risk new species

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>