Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fragile X Protein Acts as Toggle Switch in Brain Cells

10.06.2011
New research shows how the protein missing in fragile X syndrome – the most common inherited form of intellectual disability – acts as a molecular toggle switch in brain cells.

The fragile X protein, called FMRP, hooks up with a group of molecules called microRNAs to switch the production of other proteins on and off in response to chemical signals, scientists at Emory University School of Medicine have discovered.

The results appear in the June 10 issue of Molecular Cell.

“For learning and memory to take place, neurons need to be able to make new proteins on demand, at particular synapses in a localized way,” says senior author Gary Bassell PhD, professor of cell biology and neurology at Emory University School of Medicine. “It appears that FMRP has evolved to use microRNAs to control the synthesis of proteins at synapses.”

The research team included the first author, Ravi Muddashetty PhD, and contributing co-authors, Vijayalaxmi Nalavadi PhD, Christina Gross PhD, Xiaodi Yao, Oscar Laur PhD and Lei Xing PhD. This research was done in collaboration with Stephen Warren PhD, professor and chair of the Department of Human Genetics.

In fragile X syndrome, FMRP’s absence leads to overactive signaling and unregulated protein production at synapses, the junctions between brain cells where chemical communication occurs. This leads to structural changes at synapses and an impairment of cells’ ability to respond to chemical signals, which in turn interferes with learning and memory.

Muddashetty and Bassell focused on a particular protein called PSD-95, whose production they had previously discovered was regulated by FMRP – although they didn’t know how FMRP exerted its control. PSD-95 appears to have an important role in anchoring together signaling molecules at synapses, the parts of neurons directly involved in learning and memory. Mice lacking the gene for PSD-95 develop normally but have more difficulty learning the location of a hidden platform in a water maze, compared with normal mice.

“The changes at synapses seen in fragile X syndrome are probably not caused by the overproduction of a single protein,” Bassell says. “But we think that losing the ability to make PSD-95 on demand is an important component.”

In cultured neurons, Muddashetty studied part of the RNA molecule encoding PSD-95, which responds to excitement by the neurotransmitter glutamate. This way he could dissect which proteins and RNA molecules were needed. Interfering with a particular microRNA, called miR-125, could stop the PSD-95 RNA from responding to glutamate signaling and could even drive neurons to produce more protrusions at their synapses.

MicroRNAs are involved in a process called RNA interference, whose discovery earned the 2006 Nobel Prize in Medicine. RNA interference is a way that short RNA molecules (microRNAs) can silence a stretch of genetic code.

These tiny RNA molecules have become a widely used laboratory tool for shutting off a specific gene. When the RNA molecules are introduced into the cell, they are actually hijacking a machine inside the cell called RISC (RNA-induced silencing complex). MicroRNAs normally govern the activity of RISC, which can prevent a given gene from being translated from RNA into protein.

In a sense, FMRP is acting as a “RISC manager.” Together with microRNA, it clamps down on an RNA, preventing the synthesis of protein, until glutamate signals force them to loosen up. Thus, FMRP determines when the protein should be made at the synapses.

“Future work may uncover whether this is a general mechanism to guide specific miRNAs onto target mRNAs at synapses,” the authors write.

The finding illustrates how microRNAs are emerging as key players in neurological development and disease, Bassell says. Since a given microRNA can regulate hundreds of targets, one potential drug strategy for fragile X syndrome would be to aim at restoring microRNA function.

The research was supported by the National Institutes of Health, the Fraxa Research Foundation and National Fragile X Foundation.

Reference:

R.S. Muddashetty, V.C. Nalavadi, C. Gross, Xiaodi Yao, L. Xing, O. Laur, S.T. Warren; and G. Bassell. Reversible inhibition of PSD-95 mRNA translation by miR-125a, FMRP phosphorylation and mGluR signaling. Mol. Cell (2011).

The Robert W. Woodruff Health Sciences Center of Emory University is an academic health science and service center focused on missions of teaching, research, health care and public service.

Kerry Ludlam | EurekAlert!
Further information:
http://www.emory.edu

More articles from Life Sciences:

nachricht New type of photosynthesis discovered
17.06.2018 | Imperial College London

nachricht New ID pictures of conducting polymers discover a surprise ABBA fan
17.06.2018 | University of Warwick

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>