Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fragile X Protein Acts as Toggle Switch in Brain Cells

10.06.2011
New research shows how the protein missing in fragile X syndrome – the most common inherited form of intellectual disability – acts as a molecular toggle switch in brain cells.

The fragile X protein, called FMRP, hooks up with a group of molecules called microRNAs to switch the production of other proteins on and off in response to chemical signals, scientists at Emory University School of Medicine have discovered.

The results appear in the June 10 issue of Molecular Cell.

“For learning and memory to take place, neurons need to be able to make new proteins on demand, at particular synapses in a localized way,” says senior author Gary Bassell PhD, professor of cell biology and neurology at Emory University School of Medicine. “It appears that FMRP has evolved to use microRNAs to control the synthesis of proteins at synapses.”

The research team included the first author, Ravi Muddashetty PhD, and contributing co-authors, Vijayalaxmi Nalavadi PhD, Christina Gross PhD, Xiaodi Yao, Oscar Laur PhD and Lei Xing PhD. This research was done in collaboration with Stephen Warren PhD, professor and chair of the Department of Human Genetics.

In fragile X syndrome, FMRP’s absence leads to overactive signaling and unregulated protein production at synapses, the junctions between brain cells where chemical communication occurs. This leads to structural changes at synapses and an impairment of cells’ ability to respond to chemical signals, which in turn interferes with learning and memory.

Muddashetty and Bassell focused on a particular protein called PSD-95, whose production they had previously discovered was regulated by FMRP – although they didn’t know how FMRP exerted its control. PSD-95 appears to have an important role in anchoring together signaling molecules at synapses, the parts of neurons directly involved in learning and memory. Mice lacking the gene for PSD-95 develop normally but have more difficulty learning the location of a hidden platform in a water maze, compared with normal mice.

“The changes at synapses seen in fragile X syndrome are probably not caused by the overproduction of a single protein,” Bassell says. “But we think that losing the ability to make PSD-95 on demand is an important component.”

In cultured neurons, Muddashetty studied part of the RNA molecule encoding PSD-95, which responds to excitement by the neurotransmitter glutamate. This way he could dissect which proteins and RNA molecules were needed. Interfering with a particular microRNA, called miR-125, could stop the PSD-95 RNA from responding to glutamate signaling and could even drive neurons to produce more protrusions at their synapses.

MicroRNAs are involved in a process called RNA interference, whose discovery earned the 2006 Nobel Prize in Medicine. RNA interference is a way that short RNA molecules (microRNAs) can silence a stretch of genetic code.

These tiny RNA molecules have become a widely used laboratory tool for shutting off a specific gene. When the RNA molecules are introduced into the cell, they are actually hijacking a machine inside the cell called RISC (RNA-induced silencing complex). MicroRNAs normally govern the activity of RISC, which can prevent a given gene from being translated from RNA into protein.

In a sense, FMRP is acting as a “RISC manager.” Together with microRNA, it clamps down on an RNA, preventing the synthesis of protein, until glutamate signals force them to loosen up. Thus, FMRP determines when the protein should be made at the synapses.

“Future work may uncover whether this is a general mechanism to guide specific miRNAs onto target mRNAs at synapses,” the authors write.

The finding illustrates how microRNAs are emerging as key players in neurological development and disease, Bassell says. Since a given microRNA can regulate hundreds of targets, one potential drug strategy for fragile X syndrome would be to aim at restoring microRNA function.

The research was supported by the National Institutes of Health, the Fraxa Research Foundation and National Fragile X Foundation.

Reference:

R.S. Muddashetty, V.C. Nalavadi, C. Gross, Xiaodi Yao, L. Xing, O. Laur, S.T. Warren; and G. Bassell. Reversible inhibition of PSD-95 mRNA translation by miR-125a, FMRP phosphorylation and mGluR signaling. Mol. Cell (2011).

The Robert W. Woodruff Health Sciences Center of Emory University is an academic health science and service center focused on missions of teaching, research, health care and public service.

Kerry Ludlam | EurekAlert!
Further information:
http://www.emory.edu

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>