Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fox Chase Researchers Discover Novel Role of the NEDD9 Gene in Early Stages of Breast Cancer

15.01.2013
Breast cancer is the second leading cause of cancer deaths among women in the United States. Many of these deaths occur when there is an initial diagnosis of invasive or metastatic disease.

A protein called NEDD9—which regulates cell migration, division and survival—has been linked to tumor invasion and metastasis in a variety of cancers. Researchers at Fox Chase Cancer Center have now shown that NEDD9 plays a surprising role in the early stages of breast tumor development by controlling the growth of progenitor cells that give rise to tumors.

The findings, published in the journal Oncogene on January 14, 2013, could lead to personalized treatment strategies for women with breast cancer based on the levels of NEDD9 in their tumors.

"For several years, NEDD9 has been linked to tumor metastasis and invasion at later stages. This is the first study that really shows how important NEDD9 can be for the initiation of tumors in breast cancer, and to link this initiation process to progenitor cells," says lead study author Joy Little, PhD, a postdoctoral fellow at Fox Chase who works in the laboratory of senior study investigator Erica A. Golemis, PhD, Deputy Chief Scientific Officer and Vice President at Fox Chase.

In the study, Little, Golemis and their collaborators mated mice without the NEDD9 gene to mice engineered to develop HER2+ mammary tumors and unexpectedly found that these mice were largely resistant to tumor formation. Only 18% of the mice developed mammary tumors, compared with 80% of mice that had a functional NEDD9 gene. In contrast to previous research findings showing that an increase in NEDD9 levels promotes tumor aggressiveness, the researchers found that loss of NEDD9 had little effect on tumor metastasis, indicating that it is not required for this process in this specific context. Once formed, the tumors in mice lacking NEDD9 grew rapidly, suggesting that it either plays a less important role at later stages of tumor growth or tumors undergo compensatory changes that allow them to bypass the need for NEDD9.

Importantly, mice lacking NEDD9 showed a significant reduction in progenitor cell populations in the mammary gland compared with mice that had a functional NEDD9 gene. Progenitor cells from NEDD9-null mice were less likely to form three-dimensional mammospheres in culture, but proliferated at the same rate as cells from control mice. The loss of Nedd9 also made progenitor cells more sensitive to lower doses of two tumor-inhibiting drugs—a Food and Drug Administration-approved Src inhibitor called dasatinib, and a focal adhesion kinase inhibitor from a class of drugs currently being tested in clinical trials for the treatment of cancer. These findings suggest that these types of drugs would more effectively control breast cancer tumors with low levels of NEDD9.

"Eventually, with a biopsy, you may be able to get a read-out of all the mutations that a tumor has, and each one would potentially dictate whether or not a certain line of therapy would work for a specific tumor," Little says. "If NEDD9 levels are higher in a particular tumor, we could potentially determine whether or not it would be more sensitive to specific inhibitors."

To follow up on this work, the researchers plan to determine the mechanisms by which NEDD9 controls tumor formation, and examine whether NEDD9 plays a similar role in early stages of other types of cancer.

Co-authors on the study include Victoria Serzhanova, Eugene Izumchenko, Brian L. Egleston, Andres J. Klein-Szanto, and Maria Shubina of Fox Chase; Erica Parise of the University of Pittsburgh; Grace Loudon of Bryn Mawr College; Sachiko Seo and Mineo Kurokawa of the University of Tokyo; and Michael F. Ochs of Johns Hopkins University.

Fox Chase Cancer Center, part of the Temple University Health System, is one of the leading cancer research and treatment centers in the United States. Founded in 1904 in Philadelphia as one of the nation’s first cancer hospitals, Fox Chase was also among the first institutions to be designated a National Cancer Institute Comprehensive Cancer Center in 1974. Fox Chase researchers have won the highest awards in their fields, including two Nobel Prizes. Fox Chase physicians are also routinely recognized in national rankings, and the Center’s nursing program has received the Magnet status for excellence three consecutive times. Today, Fox Chase conducts a broad array of nationally competitive basic, translational, and clinical research, with special programs in cancer prevention, detection, survivorship, and community outreach. For more information, call 1-888-FOX-CHASE or 1-888-369-2427.

Diana Quattrone | EurekAlert!
Further information:
http://www.fccc.edu

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>