Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fox Chase Researchers Discover Novel Role of the NEDD9 Gene in Early Stages of Breast Cancer

15.01.2013
Breast cancer is the second leading cause of cancer deaths among women in the United States. Many of these deaths occur when there is an initial diagnosis of invasive or metastatic disease.

A protein called NEDD9—which regulates cell migration, division and survival—has been linked to tumor invasion and metastasis in a variety of cancers. Researchers at Fox Chase Cancer Center have now shown that NEDD9 plays a surprising role in the early stages of breast tumor development by controlling the growth of progenitor cells that give rise to tumors.

The findings, published in the journal Oncogene on January 14, 2013, could lead to personalized treatment strategies for women with breast cancer based on the levels of NEDD9 in their tumors.

"For several years, NEDD9 has been linked to tumor metastasis and invasion at later stages. This is the first study that really shows how important NEDD9 can be for the initiation of tumors in breast cancer, and to link this initiation process to progenitor cells," says lead study author Joy Little, PhD, a postdoctoral fellow at Fox Chase who works in the laboratory of senior study investigator Erica A. Golemis, PhD, Deputy Chief Scientific Officer and Vice President at Fox Chase.

In the study, Little, Golemis and their collaborators mated mice without the NEDD9 gene to mice engineered to develop HER2+ mammary tumors and unexpectedly found that these mice were largely resistant to tumor formation. Only 18% of the mice developed mammary tumors, compared with 80% of mice that had a functional NEDD9 gene. In contrast to previous research findings showing that an increase in NEDD9 levels promotes tumor aggressiveness, the researchers found that loss of NEDD9 had little effect on tumor metastasis, indicating that it is not required for this process in this specific context. Once formed, the tumors in mice lacking NEDD9 grew rapidly, suggesting that it either plays a less important role at later stages of tumor growth or tumors undergo compensatory changes that allow them to bypass the need for NEDD9.

Importantly, mice lacking NEDD9 showed a significant reduction in progenitor cell populations in the mammary gland compared with mice that had a functional NEDD9 gene. Progenitor cells from NEDD9-null mice were less likely to form three-dimensional mammospheres in culture, but proliferated at the same rate as cells from control mice. The loss of Nedd9 also made progenitor cells more sensitive to lower doses of two tumor-inhibiting drugs—a Food and Drug Administration-approved Src inhibitor called dasatinib, and a focal adhesion kinase inhibitor from a class of drugs currently being tested in clinical trials for the treatment of cancer. These findings suggest that these types of drugs would more effectively control breast cancer tumors with low levels of NEDD9.

"Eventually, with a biopsy, you may be able to get a read-out of all the mutations that a tumor has, and each one would potentially dictate whether or not a certain line of therapy would work for a specific tumor," Little says. "If NEDD9 levels are higher in a particular tumor, we could potentially determine whether or not it would be more sensitive to specific inhibitors."

To follow up on this work, the researchers plan to determine the mechanisms by which NEDD9 controls tumor formation, and examine whether NEDD9 plays a similar role in early stages of other types of cancer.

Co-authors on the study include Victoria Serzhanova, Eugene Izumchenko, Brian L. Egleston, Andres J. Klein-Szanto, and Maria Shubina of Fox Chase; Erica Parise of the University of Pittsburgh; Grace Loudon of Bryn Mawr College; Sachiko Seo and Mineo Kurokawa of the University of Tokyo; and Michael F. Ochs of Johns Hopkins University.

Fox Chase Cancer Center, part of the Temple University Health System, is one of the leading cancer research and treatment centers in the United States. Founded in 1904 in Philadelphia as one of the nation’s first cancer hospitals, Fox Chase was also among the first institutions to be designated a National Cancer Institute Comprehensive Cancer Center in 1974. Fox Chase researchers have won the highest awards in their fields, including two Nobel Prizes. Fox Chase physicians are also routinely recognized in national rankings, and the Center’s nursing program has received the Magnet status for excellence three consecutive times. Today, Fox Chase conducts a broad array of nationally competitive basic, translational, and clinical research, with special programs in cancer prevention, detection, survivorship, and community outreach. For more information, call 1-888-FOX-CHASE or 1-888-369-2427.

Diana Quattrone | EurekAlert!
Further information:
http://www.fccc.edu

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>