Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fox Chase Researchers Discover New Mechanism of Gene Regulation

27.02.2014

Additional insights into how cancer cells use PARP1 enzyme to resist current therapies may also point to the next generation of cancer drugs

In the cells of humans and other organisms, only a subset of genes are active at any given time, depending largely on the stage of life and the particular duties of the cell. Cells use different molecular mechanisms to orchestrate the activation and deactivation of genes as needed. One central mechanism is an intricate DNA packaging system that either shields genes from activation or exposes them for use.

In this system, the DNA strand, with its genes, is coiled around molecules known as histones, which themselves are assembled into larger entities called nucleosomes. Together, nucleosomes and DNA form chromatin, which is the primary substance of chromosomes. This DNA-packaging system is vital for managing development and maintaining health. When it goes awry, cancer can be the result.

In a study published in Molecular Cell this month, Alexei V. Tulin, PhD, Associate Professor at Fox Chase Cancer Center, and colleagues reported that chemical modification of one type of histone—called H2Av—leads to substantial changes in nucleosome shape. As a consequence, a previously hidden portion of the nucleosome becomes exposed. This newly exposed portion interacts with and activates an enzyme called PARP1. Upon activation, PARP1 assembles long branching molecules of Poly(ADP-ribose), which appear to open the DNA packaging around the site of the PARP1 activation, exposing specific genes for activation.

... more about:
»Cancer »DNA »PARP1 »Regulation »activation »genes »histones

“Currently, the nucleosome is often portrayed as a stable, inert structure, or a tiny ball,” Tulin says. “We found that the nucleosome is actually a quite dynamic structure. When we modified one histone, we changed the whole nucleosome.”

In addition to reevaluating how histones control gene activation, the study also reports a new mechanism of PARP1 regulation. Many standard cancer treatments, including chemotherapy drugs and radiation therapy, damage the DNA of rapidly dividing cancer cells. However, the effectiveness of these treatments is limited. Research has suggested that standard therapies combined with drugs that inhibit PARP1 can kill cancer cells, but clinical trials testing PARP1 inhibitors in cancer patients have produced disappointing outcomes. “I believe that to a large extent the previous setbacks were caused by a general misconception of the role of PARP1 in living cells and the mechanisms of PARP1 regulation,” Tulin says. “Now that we know this mechanism of PARP1 regulation, we can design approaches to inhibit this protein in an effective way to better treat cancer.”

The ability of PARP1 to control cellular processes is regulated by nucleosomes—the basic unit of DNA packaging, consisting of a segment of DNA wound in sequence around eight histone protein cores, similar to a thread wrapped around a spool. Histones undergo different chemical modifications that play an important role in regulating the activity of genes. Through this mechanism, histones control the ability of PARP1 to activate genes and repair DNA damage.

“This mechanism of PARP1 regulation by histones is still very new,” Tulin says. “People believe that PARP1 is mainly activated through interactions with DNA, but we have found that the main pathway of PARP1 activation is through interactions with the nucleosome.” In the new study, Tulin and his colleagues reevaluated how PARP1 is activated by changes in the nucleosome. They found that the addition of a phosphate group to a histone—called H2Av—triggered the entire nucleosome to change shape, exposing previously hidden parts of the nucleosome that began to interact with and activate PARP1.

To follow up on these findings, Tulin and his team are now developing the next generation of PARP1 inhibitors. Designed to block the newly identified mechanism of PARP1 activation, these new inhibitors will specifically target PARP1, in contrast to the PARP1 inhibitors currently being tested in clinical trials.

“We expect that our targeted PARP1 inhibitors will be more effective at killing cancer cells while protecting important molecular pathways in normal cells,” Tulin says. “For this reason, we believe that the specific inhibitors we are designing hold great promise for cancer treatment.”

Co-investigators on the study include Colin J. Thomas, Elena Kotova, Mark Andrake, and Jared Adolf-Bryfogle of Fox Chase; Robert Glaser of the New York State Department of Health in Albany; and Catherine Regnard of Ludwig Maximilian University in Munich, Germany. This research was supported by grants from the National Institutes of Health (R01 GM077452 and R01 DK082623) to Tulin.

Fox Chase Cancer Center, part of the Temple University Health System, is one of the leading cancer research and treatment centers in the United States. Founded in 1904 in Philadelphia as one of the nation’s first cancer hospitals, Fox Chase was also among the first institutions to be designated a National Cancer Institute Comprehensive Cancer Center in 1974. Fox Chase researchers have won the highest awards in their fields, including two Nobel Prizes. Fox Chase physicians are also routinely recognized in national rankings, and the Center’s nursing program has received the Magnet recognition for excellence four consecutive times. Today, Fox Chase conducts a broad array of nationally competitive basic, translational, and clinical research, with special programs in cancer prevention, detection, survivorship, and community outreach.  For more information, call 1-888-FOX CHASE or (1-888-369-2427).

Diana Quattrone | EurekAlert!
Further information:
http://www.fccc.edu

Further reports about: Cancer DNA PARP1 Regulation activation genes histones

More articles from Life Sciences:

nachricht Genetic Regulation of the Thymus Function Identified
23.08.2016 | Universität Basel

nachricht Sun protection for plants - Plant substances can protect plants against harmful UV radiation
22.08.2016 | Max-Planck-Institut für Molekulare Pflanzenphysiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

Im Focus: Every atom counts

Malignant cancer cells not only proliferate faster than most body cells. They are also more dependent on the most important cellular garbage disposal unit, the proteasome, which degrades defective proteins. Therapies for some types of cancer exploit this dependence: Patients are treated with inhibitors, which block the proteasome. The ensuing pile-up of junk overwhelms the cancer cell, ultimately killing it. Scientists have now succeeded in determining the human proteasome’s 3D structure in unprecedented detail and have deciphered the mechanism by which inhibitors block the proteasome. Their results will pave the way to develop more effective proteasome inhibitors for cancer therapy.

In order to understand how cellular machines such as the proteasome work, it is essential to determine their three-dimensional structure in detail. With its...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

Towards the connected, automated and electrified automobiles: AMAA conference in Brussels

02.08.2016 | Event News

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

 
Latest News

New microchip demonstrates efficiency and scalable design

23.08.2016 | Information Technology

Genetic Regulation of the Thymus Function Identified

23.08.2016 | Life Sciences

Biomass turnover time in ecosystems is halved by land use

23.08.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>