Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fox Chase Researchers Discover New Mechanism of Gene Regulation

27.02.2014

Additional insights into how cancer cells use PARP1 enzyme to resist current therapies may also point to the next generation of cancer drugs

In the cells of humans and other organisms, only a subset of genes are active at any given time, depending largely on the stage of life and the particular duties of the cell. Cells use different molecular mechanisms to orchestrate the activation and deactivation of genes as needed. One central mechanism is an intricate DNA packaging system that either shields genes from activation or exposes them for use.

In this system, the DNA strand, with its genes, is coiled around molecules known as histones, which themselves are assembled into larger entities called nucleosomes. Together, nucleosomes and DNA form chromatin, which is the primary substance of chromosomes. This DNA-packaging system is vital for managing development and maintaining health. When it goes awry, cancer can be the result.

In a study published in Molecular Cell this month, Alexei V. Tulin, PhD, Associate Professor at Fox Chase Cancer Center, and colleagues reported that chemical modification of one type of histone—called H2Av—leads to substantial changes in nucleosome shape. As a consequence, a previously hidden portion of the nucleosome becomes exposed. This newly exposed portion interacts with and activates an enzyme called PARP1. Upon activation, PARP1 assembles long branching molecules of Poly(ADP-ribose), which appear to open the DNA packaging around the site of the PARP1 activation, exposing specific genes for activation.

... more about:
»Cancer »DNA »PARP1 »Regulation »activation »genes »histones

“Currently, the nucleosome is often portrayed as a stable, inert structure, or a tiny ball,” Tulin says. “We found that the nucleosome is actually a quite dynamic structure. When we modified one histone, we changed the whole nucleosome.”

In addition to reevaluating how histones control gene activation, the study also reports a new mechanism of PARP1 regulation. Many standard cancer treatments, including chemotherapy drugs and radiation therapy, damage the DNA of rapidly dividing cancer cells. However, the effectiveness of these treatments is limited. Research has suggested that standard therapies combined with drugs that inhibit PARP1 can kill cancer cells, but clinical trials testing PARP1 inhibitors in cancer patients have produced disappointing outcomes. “I believe that to a large extent the previous setbacks were caused by a general misconception of the role of PARP1 in living cells and the mechanisms of PARP1 regulation,” Tulin says. “Now that we know this mechanism of PARP1 regulation, we can design approaches to inhibit this protein in an effective way to better treat cancer.”

The ability of PARP1 to control cellular processes is regulated by nucleosomes—the basic unit of DNA packaging, consisting of a segment of DNA wound in sequence around eight histone protein cores, similar to a thread wrapped around a spool. Histones undergo different chemical modifications that play an important role in regulating the activity of genes. Through this mechanism, histones control the ability of PARP1 to activate genes and repair DNA damage.

“This mechanism of PARP1 regulation by histones is still very new,” Tulin says. “People believe that PARP1 is mainly activated through interactions with DNA, but we have found that the main pathway of PARP1 activation is through interactions with the nucleosome.” In the new study, Tulin and his colleagues reevaluated how PARP1 is activated by changes in the nucleosome. They found that the addition of a phosphate group to a histone—called H2Av—triggered the entire nucleosome to change shape, exposing previously hidden parts of the nucleosome that began to interact with and activate PARP1.

To follow up on these findings, Tulin and his team are now developing the next generation of PARP1 inhibitors. Designed to block the newly identified mechanism of PARP1 activation, these new inhibitors will specifically target PARP1, in contrast to the PARP1 inhibitors currently being tested in clinical trials.

“We expect that our targeted PARP1 inhibitors will be more effective at killing cancer cells while protecting important molecular pathways in normal cells,” Tulin says. “For this reason, we believe that the specific inhibitors we are designing hold great promise for cancer treatment.”

Co-investigators on the study include Colin J. Thomas, Elena Kotova, Mark Andrake, and Jared Adolf-Bryfogle of Fox Chase; Robert Glaser of the New York State Department of Health in Albany; and Catherine Regnard of Ludwig Maximilian University in Munich, Germany. This research was supported by grants from the National Institutes of Health (R01 GM077452 and R01 DK082623) to Tulin.

Fox Chase Cancer Center, part of the Temple University Health System, is one of the leading cancer research and treatment centers in the United States. Founded in 1904 in Philadelphia as one of the nation’s first cancer hospitals, Fox Chase was also among the first institutions to be designated a National Cancer Institute Comprehensive Cancer Center in 1974. Fox Chase researchers have won the highest awards in their fields, including two Nobel Prizes. Fox Chase physicians are also routinely recognized in national rankings, and the Center’s nursing program has received the Magnet recognition for excellence four consecutive times. Today, Fox Chase conducts a broad array of nationally competitive basic, translational, and clinical research, with special programs in cancer prevention, detection, survivorship, and community outreach.  For more information, call 1-888-FOX CHASE or (1-888-369-2427).

Diana Quattrone | EurekAlert!
Further information:
http://www.fccc.edu

Further reports about: Cancer DNA PARP1 Regulation activation genes histones

More articles from Life Sciences:

nachricht Getting a grip on slippery cell membranes
28.06.2016 | Worcester Polytechnic Institute

nachricht Unexpected flexibility found in odorant molecules
27.06.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Flexible OLED applications arrive

R2D2, a joint project to analyze and development high-TRL processes and technologies for manufacture of flexible organic light-emitting diodes (OLEDs) funded by the German Federal Ministry of Education and Research (BMBF) has been successfully completed.

In contrast to point light sources like LEDs made of inorganic semiconductor crystals, organic light-emitting diodes (OLEDs) are light-emitting surfaces. Their...

Im Focus: Unexpected flexibility found in odorant molecules

High resolution rotational spectroscopy reveals an unprecedented number of conformations of an odorant molecule – a new world record!

In a recent publication in the journal Physical Chemistry Chemical Physics, researchers from the Max Planck Institute for the Structure and Dynamics of Matter...

Im Focus: 3-D printing produces cartilage from strands of bioink

Strands of cow cartilage substitute for ink in a 3D bioprinting process that may one day create cartilage patches for worn out joints, according to a team of engineers. "Our goal is to create tissue that can be used to replace large amounts of worn out tissue or design patches," said Ibrahim T. Ozbolat, associate professor of engineering science and mechanics. "Those who have osteoarthritis in their joints suffer a lot. We need a new alternative treatment for this."

Cartilage is a good tissue to target for scale-up bioprinting because it is made up of only one cell type and has no blood vessels within the tissue. It is...

Im Focus: First experimental quantum simulation of particle physics phenomena

Physicists in Innsbruck have realized the first quantum simulation of lattice gauge theories, building a bridge between high-energy theory and atomic physics. In the journal Nature, Rainer Blatt‘s and Peter Zoller’s research teams describe how they simulated the creation of elementary particle pairs out of the vacuum by using a quantum computer.

Elementary particles are the fundamental buildings blocks of matter, and their properties are described by the Standard Model of particle physics. The...

Im Focus: Is There Life On Mars?

Survivalist back from Space - 18 months on the outer skin of the ISS

A year and a half on the outer wall of the International Space Station ISS in altitude of 400 kilometers is a real challenge. Whether a primordial bacterium...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

 
Latest News

Scientists explain unusual and effective features in perovskite

28.06.2016 | Physics and Astronomy

ChemCam findings hint at oxygen-rich past on Mars

28.06.2016 | Earth Sciences

Previously unknown global ecological disaster discovered

28.06.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>