Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Formidable fungal force counters biofuel plant pathogens

04.05.2011
Fungi play significant ecological and economic roles. They can break down organic matter, cause devastating agricultural blights, enter into symbiotic relationships to protect and nourish plants, or offer a tasty repast.

For industrial applications, fungi provide a source of enzymes to catalyze such processes as generating biofuels from plant biomass. One large fungal group with such enzymes are the rust plant pathogens which cannot survive on their own so they use crops as hosts, leading to reduced yields and potentially hindering efforts to grow biomass for fuel. Factors that could reduce the growth of plant biomass, thus reducing biofuel production, are a target for investigation of the Department of Energy (DOE) Joint Genome Institute (JGI).

Published the week of May 2, 2011 in the early edition of the Proceedings of the National Academy of Sciences, the work of an international team of researchers that included Fungal Genome Program head Igor Grigoriev, as well as several members from the DOE JGI, compared the genomes of two rust fungi to identify the characteristics by which these pathogens can invade their plant hosts and to develop methods of controlling the damage they can cause. The team led by co-first author Sebastien Duplessis of the French national agricultural research institute (INRA) worked on the poplar leaf rust fungus while a team led by co-first author Christina Cuomo of the Broad Institute of MIT and Harvard and Les Szabo from Agricultural Research Service USDA and University of Minnesota worked separately on the wheat and Barley stem rust fungus. The two-genome consortia joined their efforts to compare the genomic features of the two rust pathogens to reveal the role they play in infecting the host plant and acquiring nutrients.

Sequenced at the DOE JGI using the Sanger platform under the 2006 Community Sequencing Program, the 101-million base pair genome of Melampsora larici-populina, the first tree pathogen sequenced, was made publicly available in 2008. Poplar leaf rust outbreaks weaken poplar trees, a candidate bioenergy feedstock whose genome sequence was published by the DOE JGI in 2007. In this study Melampsora larici-populina was compared with the wheat stem rust fungus sequenced by the Broad Institute. This rust fungus causes major epidemics of both barley and wheat worldwide. A strain known as Ug99 has spread across Africa and into Central Asia, and overcome most of the stem rust resistant wheat varieties developed over the past 50 years. This is first joint fungal genomics study for the DOE JGI and the Broad Institute.

Sebastien Duplessis said that unlike wheat and other plants, it is difficult to estimate the economic damage resulting from poplar rust outbreaks though the most common figure indicates as much as 50 percent annual growth loss in poplar plantations following major rust epidemics. Part of the problem lies in the fungal method of attack. "For a perennial species such as poplar attacked by an obligate biotroph, the host is maintained alive and the tree is not killed," he said.

DOE JGI's Grigoriev noted that poplar rust and the wheat rust fungi are distantly related and show genome specific expansions in gene families. NRA's Francis Martin, a senior author on the study and long-time DOE JGI collaborator, said that the work means researchers now have the genomes of two fungi that interact with poplar in very different ways. Martin and his colleagues were part of the group that worked on the symbiont Laccaria bicolor, whose genome sequence was published in 2008. "[The Melampsora genome] will allow a better understanding on how a 'bioenergy' tree interacts with its cortege of microbial associates," he said. Grigoriev echoed Martin's comments about the benefits of having the genome sequences. "Learning how these all impact each other helps us to grow poplar and other crops for bioenergy production," he said.

Still, one of the goals of the project is to be able to determine how to disrupt the effectors by which the fungus can suppress host defense and recognition. In the paper, the team describes a two-pronged attack where the fungi mask their proximity to the plant and then use enzymes to attach the fungal cell wall to the plant cell wall and then invade the host.

"The precise analysis of these effectors, their localization and their targets in the host plant, and how they evolve to overcome plant resistances will contribute to the selection and management of sustainable resistances of poplar trees to the rust disease," said Duplessis.

He said the researchers plan to sequence more Melampsora genomes to better understand the process by which the rust fungus adapts to its host and overcome the plant's resistance. "Our paper demonstrates that the rust fungi genomes contain more than a thousand of such small effectors that likely interfere with plant perception systems and activation of defense reactions. Thus a targeted approach to disrupt the effectors entry and action might be complicated. However, sequencing the rust fungus genome opens great perspectives to study the evolution of these candidate effectors and further define new resistances through breeding strategies in tree plantations."

"With these blueprints we can then go and analyze at a population biology level the genetic diversity of pathogens as they evolve and adapt to control agents such as fungicides to develop more coordinated management strategies," said Pietro Spanu, a molecular plant biologist at Imperial College London who studies a mildew that is also a fungal pathogen. "The genome sequences are really toolkits," he said. "They give us lots of information on how the organisms evolved, allowing us to make hypotheses on what fungi need to become obligate parasites."

Spanu also said that the paper is part of a recent spate in genome publications on these fungi, and the information allows researchers to see for the first time the "remarkable convergences" in the evolution of these pathogens. "It's like discovering that in order to fly you need wings, and each group has different types of wings."

David Gilbert | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>