Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Formation of complex biomolecules from simple biochemical building blocks

27.10.2015

Scientists from the Institute of Organic Chemistry at the University of Stuttgart have found that under certain conditions spontaneous reactions take place between ribonucleotides and amino acids, leading to molecules that contain both ribonucleic acid (RNA) and peptide chains. The findings suggest that a primitive form of protein synthesis could have preceded today's protein synthesis during prebiotic evolution. This makes it likely that life did not start with a pure 'RNA world' but with a molecular world in which RNA as well as very short protein chains were formed. The results were published in the international edition of Angewandte Chemie.

Life is based on a complex biochemical machinery. How this machinery arose from inanimate material is unclear. The most important biochemical machines are enzymes (proteins). The blueprints of the enzymes are encoded in DNA and are transcribed with the aid of both RNA and enzymes.


Cartoon representations of biochemical protein synthesis (left) and the spontaneous chemical processes found in the laboratory.

(Graphic by M. Jauker)


(Peptidyl-RNA, Peptides, Co-factors)

University of Stuttgart

Without enzymes, there is no transcription, and without genes and RNA there are no enzymes. Up to now the solution for this dilemma was presumed to be that a so-called 'RNA world' was first, in which RNA acted both as a genetic material and as biocatalyst. Yet, how the 'RNA-protein world' evolved from the RNA world was unclear.

Unexpected observation: formation of peptidyl RNAs

Researchers at the University of Stuttgart now report that spontaneous reactions take place between the basic building blocks of RNA, the ribonucleotides, and amino acids, if they come into contact with each other in a special aqueous buffer.

The buffer contains a condensation agent that induces a spontaneous condensation of the building blocks. Not just RNA chains form in the mixtures, but also mixed molecules, made up of an RNA portion and a peptide chain (proteins are long peptide chains). This mixed type of molecule is called peptidyl RNA. Certain parts of the biochemical machinery for protein synthesis may have evolved from peptidyl RNAs.

The observation came as a surprise. The research group of Professor Clemens Richert was searching for reaction conditions inducing enzyme-free copying of RNA sequences. When graduate student Mario Jauker used conditions mimicking ice-water mixtures that are found when seawater freezes and he added a potent condensation agent, he observed untemplated formation of new RNA chains

. Since the condensation agent, an organic derivative of the molecule cyanamide, is also used in peptide synthesis, chemical engineer Helmut Griesser then mixed amino acids to the RNA building blocks. Surprisingly, significant concentrations of peptidyl RNAs formed alongside RNA chains and some free peptides in the salty buffer solutions. More complex peptidyl RNAs are key intermediates of protein synthesis.

Cartoon representations of biochemical protein synthesis (left) and the spontaneous chemical processes found in the laboratory. Peptidyl RNAs arise from amino acids and nucleotides, which release peptides in the presence of acid. (Graphic by M. Jauker)

In today's protein synthesis (left-hand side of graphic), the peptide chain grows to a full-length protein by migrating from one charged transfer-RNA to the next, with one amino acid residue being added during each step according to the genetic code. Earlier attempts to induce the formation of peptidyl RNAs in the absence of enzymes were largely unsuccessful. It was believed that the so-called 'C-terminus' of the peptide chain and the phosphate group of the first ribonucleotide reacted with each other.

A detailed structural characterization at the Institute of Organic Chemistry, revealed that the 'N-terminus' of the peptide chain is linked to the phosphate instead. This explains why longer peptidyl RNAs were able to form, as this structural arrangement allows both the peptide chain and the RNA chain to grow simultaneously. When the scientists added acetic acid, fee peptides were released from the peptidyl RNAs.

Importantly, it is not just peptidyl RNAs that form in the aqueous condensation buffer employed. After adding other building blocks, the researchers were able to also detect compounds that play an important role in the metabolism of the cell. These include adenosine triphosphate (ATP), the 'energy currency' of the cell, as well as the cofactors NAD and FAD that are involved in the biosynthesis of many cellular components, as well as the energy metabolism of the cell.

A more conclusive picture emerges

It is now clear that under the same reaction conditions, simple genetic materials, peptides, and key molecules of a primitive metabolism can form from simple building blocks. Therefore no major evolutionary step appears to be necessary to get from an 'RNA world' to an 'RNA-protein world'. The latter may have evolved in a series of spontaneous steps via reactions that are related to those that lead to the formation of RNA chains. The observation that this happens under conditions that also lead to the spontaneous copying of genetic information makes these observations all the more fascinating. As Professor Richert put it: "It felt as if we were watching a play performed by molecules. A play that nature encoded by creating matter with properties more fascinating than the simple structure of the chemicals suggests." His team, that now also includes Svenja Kaspari, is currently working on reaction conditions that are closer to those that are found in the cell today.

Publications in the international edition of "Angewandte Chemie"

The Stuttgart researchers report the results of their studies in two publications that are being published in the journal Angewandte Chemie and that are accessible online without a subscription:
Mario Jauker, Helmut Griesser and Clemens Richert: “Copying RNA sequences without pre-activation", Angewandte Chemie International Edition (2015), DOI: 10.1002/anie.201506592 and "Spontaneous formation of RNA strands, peptidyl-RNA and co-factors", Angewandte Chemie International Edition (2015),: DOI: 10.1002/anie.201506593

Online-Versions:
https://doi.org/10.1002/anie.201506592 and https://doi.org/10.1002/anie.201506593

Contact:
Professor Clemens Richert, University of Stuttgart, Institute of Organic Chemistry, Tel. 0711/685-64311, Email: lehrstuhl-2 (at) oc.uni-stuttgart.de

Andrea Mayer-Grenu, University of Stuttgart, Abt. University Communication, Tel. 0711/685-82176, Email: andrea.mayer-grenu (at) hkom.uni-stuttgart.de

Andrea Mayer-Grenu | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-stuttgart.de/

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>