Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Formation of complex biomolecules from simple biochemical building blocks

27.10.2015

Scientists from the Institute of Organic Chemistry at the University of Stuttgart have found that under certain conditions spontaneous reactions take place between ribonucleotides and amino acids, leading to molecules that contain both ribonucleic acid (RNA) and peptide chains. The findings suggest that a primitive form of protein synthesis could have preceded today's protein synthesis during prebiotic evolution. This makes it likely that life did not start with a pure 'RNA world' but with a molecular world in which RNA as well as very short protein chains were formed. The results were published in the international edition of Angewandte Chemie.

Life is based on a complex biochemical machinery. How this machinery arose from inanimate material is unclear. The most important biochemical machines are enzymes (proteins). The blueprints of the enzymes are encoded in DNA and are transcribed with the aid of both RNA and enzymes.


Cartoon representations of biochemical protein synthesis (left) and the spontaneous chemical processes found in the laboratory.

(Graphic by M. Jauker)


(Peptidyl-RNA, Peptides, Co-factors)

University of Stuttgart

Without enzymes, there is no transcription, and without genes and RNA there are no enzymes. Up to now the solution for this dilemma was presumed to be that a so-called 'RNA world' was first, in which RNA acted both as a genetic material and as biocatalyst. Yet, how the 'RNA-protein world' evolved from the RNA world was unclear.

Unexpected observation: formation of peptidyl RNAs

Researchers at the University of Stuttgart now report that spontaneous reactions take place between the basic building blocks of RNA, the ribonucleotides, and amino acids, if they come into contact with each other in a special aqueous buffer.

The buffer contains a condensation agent that induces a spontaneous condensation of the building blocks. Not just RNA chains form in the mixtures, but also mixed molecules, made up of an RNA portion and a peptide chain (proteins are long peptide chains). This mixed type of molecule is called peptidyl RNA. Certain parts of the biochemical machinery for protein synthesis may have evolved from peptidyl RNAs.

The observation came as a surprise. The research group of Professor Clemens Richert was searching for reaction conditions inducing enzyme-free copying of RNA sequences. When graduate student Mario Jauker used conditions mimicking ice-water mixtures that are found when seawater freezes and he added a potent condensation agent, he observed untemplated formation of new RNA chains

. Since the condensation agent, an organic derivative of the molecule cyanamide, is also used in peptide synthesis, chemical engineer Helmut Griesser then mixed amino acids to the RNA building blocks. Surprisingly, significant concentrations of peptidyl RNAs formed alongside RNA chains and some free peptides in the salty buffer solutions. More complex peptidyl RNAs are key intermediates of protein synthesis.

Cartoon representations of biochemical protein synthesis (left) and the spontaneous chemical processes found in the laboratory. Peptidyl RNAs arise from amino acids and nucleotides, which release peptides in the presence of acid. (Graphic by M. Jauker)

In today's protein synthesis (left-hand side of graphic), the peptide chain grows to a full-length protein by migrating from one charged transfer-RNA to the next, with one amino acid residue being added during each step according to the genetic code. Earlier attempts to induce the formation of peptidyl RNAs in the absence of enzymes were largely unsuccessful. It was believed that the so-called 'C-terminus' of the peptide chain and the phosphate group of the first ribonucleotide reacted with each other.

A detailed structural characterization at the Institute of Organic Chemistry, revealed that the 'N-terminus' of the peptide chain is linked to the phosphate instead. This explains why longer peptidyl RNAs were able to form, as this structural arrangement allows both the peptide chain and the RNA chain to grow simultaneously. When the scientists added acetic acid, fee peptides were released from the peptidyl RNAs.

Importantly, it is not just peptidyl RNAs that form in the aqueous condensation buffer employed. After adding other building blocks, the researchers were able to also detect compounds that play an important role in the metabolism of the cell. These include adenosine triphosphate (ATP), the 'energy currency' of the cell, as well as the cofactors NAD and FAD that are involved in the biosynthesis of many cellular components, as well as the energy metabolism of the cell.

A more conclusive picture emerges

It is now clear that under the same reaction conditions, simple genetic materials, peptides, and key molecules of a primitive metabolism can form from simple building blocks. Therefore no major evolutionary step appears to be necessary to get from an 'RNA world' to an 'RNA-protein world'. The latter may have evolved in a series of spontaneous steps via reactions that are related to those that lead to the formation of RNA chains. The observation that this happens under conditions that also lead to the spontaneous copying of genetic information makes these observations all the more fascinating. As Professor Richert put it: "It felt as if we were watching a play performed by molecules. A play that nature encoded by creating matter with properties more fascinating than the simple structure of the chemicals suggests." His team, that now also includes Svenja Kaspari, is currently working on reaction conditions that are closer to those that are found in the cell today.

Publications in the international edition of "Angewandte Chemie"

The Stuttgart researchers report the results of their studies in two publications that are being published in the journal Angewandte Chemie and that are accessible online without a subscription:
Mario Jauker, Helmut Griesser and Clemens Richert: “Copying RNA sequences without pre-activation", Angewandte Chemie International Edition (2015), DOI: 10.1002/anie.201506592 and "Spontaneous formation of RNA strands, peptidyl-RNA and co-factors", Angewandte Chemie International Edition (2015),: DOI: 10.1002/anie.201506593

Online-Versions:
https://doi.org/10.1002/anie.201506592 and https://doi.org/10.1002/anie.201506593

Contact:
Professor Clemens Richert, University of Stuttgart, Institute of Organic Chemistry, Tel. 0711/685-64311, Email: lehrstuhl-2 (at) oc.uni-stuttgart.de

Andrea Mayer-Grenu, University of Stuttgart, Abt. University Communication, Tel. 0711/685-82176, Email: andrea.mayer-grenu (at) hkom.uni-stuttgart.de

Andrea Mayer-Grenu | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-stuttgart.de/

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>