Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New form of stem cell communication rescues diseased neurons

International effort demonstrates cross-talk between implanted stem cells and diseased cells in mouse model

Investigators at Sanford-Burnham Medical Research Institute (Sanford-Burnham, formerly Burnham Institute for Medical Research), the Karolinska Institutet, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School and Université Libre de Bruxelles have demonstrated in mouse models that transplanted stems cells, when in direct contact with diseased neurons, send signals through specialized channels that rescue the neurons from death.

These direct cell-to-cell connections may also play a role in normal development by laying down the blueprint for more mature electrical connections between neurons and other cells. The research was published in the journal Proceedings of the National Academy of Sciences on February 1.

While it was already known that stem cells will seek out diseased cells in the brain, the international group of scientists showed, both in tissue culture and in mice, that the stem cells actively bring diseased neurons back from the brink via cross-talk through gap junctions, the connections between cells that allow molecular signals to pass back and forth. Significantly, the stem cells do not need to differentiate into the specific type of neuron to provide this therapeutic effect. The researchers also believe this protective mechanism may be active in other cell types and play a role in many diseases. For example, some of their preliminary work shows that these mechanisms may rescue damaged neural fibers in adult spinal cord injuries.

"We showed a while ago that stems cells may exert a therapeutic effect on damaged or diseased host systems by secreting therapeutic factors and 'bathing' the dying cells," said Evan Snyder, M.D., Ph.D., director of the Stem Cell and Regenerative Biology program at Sanford-Burnham. "However, we did not know that stem cells can also exert their action through direct cell-to-cell contact. Indeed, we believe that this may be a newly-recognized way in which stem cells communicate with the cells around them, not only under diseased conditions but during normal development."

"Grafted neural stem cells of mouse and human origin make early gap junction contact with cells in the host brain that benefit endangered host neurons, even rescuing them from impending cell death," added Richard L. Sidman, M.D., Professor of Neuropathology (Neuroscience) at BIDMC, Boston and Harvard Medical School.

Beginning with tissue culture studies, the team found that neural stem cells (NSCs, including human NSCs) integrated into the neural circuitry, coordinated signaling (as measured by calcium fluxes) and protected injured neurons. The team replicated these findings in diseased mice (including those that have a disorder similar to Huntington's disease) and spinal-injured rats. The scientists, led by Eric Herlenius, Ph.D., of the Karolinska Institutet and Dr. Snyder, hypothesized that communication through gap junctions was the mechanism for the protective effect. Subsequently, the researchers disabled gap junctions, which diminished the therapeutic effect and validated the gap junction hypothesis.

About Sanford-Burnham Medical Research Institute

Sanford-Burnham Medical Research Institute (formerly Burnham Institute for Medical Research) is dedicated to discovering the fundamental molecular causes of disease and devising the innovative therapies of tomorrow. Sanford-Burnham, with operations in California and Florida, is one of the fastest-growing research institutes in the country. The Institute ranks among the top independent research institutions nationally for NIH grant funding and among the top organizations worldwide for its research impact. From 1999 – 2009, Sanford-Burnham ranked #1 worldwide among all types of organizations in the fields of biology and biochemistry for the impact of its research publications, defined by citations per publication, according to the Institute for Scientific Information. According to government statistics, Sanford-Burnham ranks #2 nationally among all organizations in capital efficiency of generating patents, defined by the number of patents issued per grant dollars awarded.

Sanford-Burnham utilizes a unique, collaborative approach to medical research and has established major research programs in cancer, neurodegeneration, diabetes, and infectious, inflammatory, and childhood diseases. The Institute is especially known for its world-class capabilities in stem cell research and drug discovery technologies. Sanford-Burnham is a nonprofit public benefit corporation. For more information, please visit

About Beth Deaconess Medical Center

Beth Israel Deaconess Medical Center is a patient care, teaching and research affiliate of Harvard Medical School, and consistently ranks among the top four in National Institutes of Health funding among independent hospitals nationwide. BIDMC is clinically affiliated with the Joslin Diabetes Center and is a research partner of the Dana-Farber/Harvard Cancer Center. BIDMC is the official hospital of the Boston Red Sox. For more information, visit

Josh Baxt | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>