Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New form of stem cell communication rescues diseased neurons

02.02.2010
International effort demonstrates cross-talk between implanted stem cells and diseased cells in mouse model

Investigators at Sanford-Burnham Medical Research Institute (Sanford-Burnham, formerly Burnham Institute for Medical Research), the Karolinska Institutet, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School and Université Libre de Bruxelles have demonstrated in mouse models that transplanted stems cells, when in direct contact with diseased neurons, send signals through specialized channels that rescue the neurons from death.

These direct cell-to-cell connections may also play a role in normal development by laying down the blueprint for more mature electrical connections between neurons and other cells. The research was published in the journal Proceedings of the National Academy of Sciences on February 1.

While it was already known that stem cells will seek out diseased cells in the brain, the international group of scientists showed, both in tissue culture and in mice, that the stem cells actively bring diseased neurons back from the brink via cross-talk through gap junctions, the connections between cells that allow molecular signals to pass back and forth. Significantly, the stem cells do not need to differentiate into the specific type of neuron to provide this therapeutic effect. The researchers also believe this protective mechanism may be active in other cell types and play a role in many diseases. For example, some of their preliminary work shows that these mechanisms may rescue damaged neural fibers in adult spinal cord injuries.

"We showed a while ago that stems cells may exert a therapeutic effect on damaged or diseased host systems by secreting therapeutic factors and 'bathing' the dying cells," said Evan Snyder, M.D., Ph.D., director of the Stem Cell and Regenerative Biology program at Sanford-Burnham. "However, we did not know that stem cells can also exert their action through direct cell-to-cell contact. Indeed, we believe that this may be a newly-recognized way in which stem cells communicate with the cells around them, not only under diseased conditions but during normal development."

"Grafted neural stem cells of mouse and human origin make early gap junction contact with cells in the host brain that benefit endangered host neurons, even rescuing them from impending cell death," added Richard L. Sidman, M.D., Professor of Neuropathology (Neuroscience) at BIDMC, Boston and Harvard Medical School.

Beginning with tissue culture studies, the team found that neural stem cells (NSCs, including human NSCs) integrated into the neural circuitry, coordinated signaling (as measured by calcium fluxes) and protected injured neurons. The team replicated these findings in diseased mice (including those that have a disorder similar to Huntington's disease) and spinal-injured rats. The scientists, led by Eric Herlenius, Ph.D., of the Karolinska Institutet and Dr. Snyder, hypothesized that communication through gap junctions was the mechanism for the protective effect. Subsequently, the researchers disabled gap junctions, which diminished the therapeutic effect and validated the gap junction hypothesis.

About Sanford-Burnham Medical Research Institute

Sanford-Burnham Medical Research Institute (formerly Burnham Institute for Medical Research) is dedicated to discovering the fundamental molecular causes of disease and devising the innovative therapies of tomorrow. Sanford-Burnham, with operations in California and Florida, is one of the fastest-growing research institutes in the country. The Institute ranks among the top independent research institutions nationally for NIH grant funding and among the top organizations worldwide for its research impact. From 1999 – 2009, Sanford-Burnham ranked #1 worldwide among all types of organizations in the fields of biology and biochemistry for the impact of its research publications, defined by citations per publication, according to the Institute for Scientific Information. According to government statistics, Sanford-Burnham ranks #2 nationally among all organizations in capital efficiency of generating patents, defined by the number of patents issued per grant dollars awarded.

Sanford-Burnham utilizes a unique, collaborative approach to medical research and has established major research programs in cancer, neurodegeneration, diabetes, and infectious, inflammatory, and childhood diseases. The Institute is especially known for its world-class capabilities in stem cell research and drug discovery technologies. Sanford-Burnham is a nonprofit public benefit corporation. For more information, please visit www.sanford-burnham.org.

About Beth Deaconess Medical Center

Beth Israel Deaconess Medical Center is a patient care, teaching and research affiliate of Harvard Medical School, and consistently ranks among the top four in National Institutes of Health funding among independent hospitals nationwide. BIDMC is clinically affiliated with the Joslin Diabetes Center and is a research partner of the Dana-Farber/Harvard Cancer Center. BIDMC is the official hospital of the Boston Red Sox. For more information, visit www.bidmc.harvard.edu

Josh Baxt | EurekAlert!
Further information:
http://www.burnham.org

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>