Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Forest Service Part of Team Sequencing 1,000 Fungal Genomes

08.11.2011
A 79-year-old collection of fungal cultures and the U.S. Forest Service's Northern Research Stationare part of a team that will sequence 1,000 fungal genomes in the next 5 years.

Dan Lindner, a research plant pathologist with the Northern Research Station's Center for Forest Mycology Research (CFMR), is one of 13 scientists participating in the '1000 Fungal Genomes' project, which in collaboration with the Department of Energy's (DOE) Joint Genome Institute will sequence two species from every known fungal family. The project is a first step in creating an encyclopedia of all fungi, which will one day help researchers understand not only what they do, but how fungi operate.

The '1000 Fungal Genomes' project was one of 41 research projects awarded funding through the Department of Energy's 2012 Community Sequencing Program (CSP), the DOE announced November 3.

The CFMR will provide approximately 200 of the 1,000 species that will be sequenced, with the remaining 800 species provided by four other major culture collections from around the world. Established in 1932, the CFMR's culture collection includes 20,000 cultures from 1,600 species of fungi. "It's an incredible resource," Lindner said. "As far as we know, it's the world's largest collection of wood-inhabiting fungi."

The CFMR culture collection is comprised mainly of Basidiomycetes, or club fungi, which includes the types of fungi that form mushrooms. These fungi play many critical roles in forests, from species that protect tree roots to species that decompose wood to destructive forest pathogens that actively kill trees. Researchers at the CFMR will grow the fungi and isolate the DNA for sequencing by the DOE's Joint Genome Institute.

Fungi are prevalent, hard working, and largely unknown despite their importance to everything from carbon cycling to production of life-saving drugs, including "old-fashioned" wonder drugs such as penicillin as well as best sellers such as the cholesterol lowering statins and the immunosuppresant ciclosporins, which made organ transplants possible. Fungi are also needed for the production of quality of life products like chocolate, beer and specialty cheeses, such as brie and gorgonzola. There are an estimated 1 million to 1.5 million species of fungi; only about 100,000 species have a name. "They are so important in so many ways, and we have so much to learn about them," Lindner said. "We know the tip of the iceberg."

The 1000 Fungal Genomes project involves an international team of researchers lead by Oregon State University scientist Joseph Spatafora. Team members include Lindner, scientists with the U.S. Department of Agriculture's Agricultural Research Service (ARS), and scientists from universities in the United States, the Netherlands, and France.

Supported by the Office of Biological and Environmental Research in the DOE Office of Science, the DOE Joint Genome Institute's Community Sequencing Program enables scientists from universities and national laboratories around the world to probe the hidden world of microbes and plants for innovative solutions to the nation's major challenges in energy, climate, and environment.

The mission of the U.S. Forest Service is to sustain the health, diversity, and productivity of the nation's forests and grasslands to meet the needs of present and future generations. The agency manages 193 million acres of public land, provides assistance to state and private landowners, and maintains the largest forestry research organization in the world. The mission of the Forest Service's Northern Research Station is to improve people's lives and help sustain the natural resources in the Northeast and Midwest through leading-edge science and effective information delivery.

Jane Hodgins | EurekAlert!
Further information:
http://www.fs.fed.us

Further reports about: Agricultural Research CFMR Forest Service Genom Sequencing fungal natural resource

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>