Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Foothill yellow-legged frog provides insight on river management

17.05.2011
River flow fluctuations downstream of dams are often out of sync with natural flow patterns and can have significant negative effects on aquatic species, such as native frogs, according to a team of scientists from the USDA Forest Service's Pacific Southwest Research Station, the University of California, Davis and the University of California, Berkeley.

The team examined how altered water flows caused by hydroelectric dams impact the life cycle of the foothill yellow-legged frog (Rana boylii). The frog, which lives in foothill regions from southern California to southern Oregon, completes its life cycle exclusively in riverine environments.

The species is well-adapted to predictable flow patterns that are high during the spring run-off period and low during the summer. Changes to these patterns affect the survival of eggs and tadpoles and consequently are likely to be a primary factor in limiting populations of this declining species, scientists say.

Findings from three recent research projects are published in Copeia, River Research and Applications, and Conservation Genetics. These studies revealed that R. boylii tadpoles are not strong swimmers and do not survive the high flow events that can occur during the summer months in many dammed rivers, leading to local population declines. The team tested a habitat modeling tool that is commonly used for fish, with eggs and tadpole data from R. boylii, and found that it could provide reliable predictions of habitat changes under different flow scenarios. Genetic research conducted by the team identified several isolated and unique populations at the extremes of the geographic range and also demonstrated the important role of river basins in defining relationships among populations. The combined results of this work can guide conservation planning for the species.

Managing water discharge from hydroelectric dams to mirror the environment's natural flow is ideal, but this approach may not meet the needs of human consumption and energy demands.

"To conserve riverine species, one solution may be to restore some of the key characteristics of natural flow patterns, especially the timing of high and low flow periods," says Amy Lind, wildlife biologist at the Pacific Southwest Research Station in Davis, Calif., and co-author of three recent papers on R. boylii ecology and genetics.

For more information about this research, go to a recently developed website focused on this species at: http://www.fs.fed.us/psw/topics/wildlife/herp/rana_boylii/

The team's three research papers can be found at: http://www.treesearch.fs.fed.us/pubs/37847 http://www.treesearch.fs.fed.us/pubs/37848 http://www.treesearch.fs.fed.us/pubs/37849

The Pacific Southwest Research is headquartered in Albany, Calif. The station develops and communicates science needed to sustain forest ecosystems and other benefits to society. It has laboratories and research centers in California, Hawaii and the United States-affiliated Pacific Islands. For more information, visit www.fs.fed.us/psw/.

Sherri Eng | EurekAlert!
Further information:
http://www.fs.fed.us

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>