Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Food processors beware: Salmonella biofilms incredibly resistant to powerful disinfectants

16.01.2014
Once Salmonella bacteria get into a food processing facility and have an opportunity to form a biofilm on surfaces, it is likely to be extraordinarily difficult, if not impossible, to kill it, according to research published ahead of print in the journal Applied and Environmental Microbiology.

This image shows photos of biofilms on surfaces at low magnification (300) and high magnification (3000) using electron microscope.

Credit: Photo courtesy of National University of Ireland, Galway

Researchers from National University of Ireland, Galway conducted a study in which they attempted to kill Salmonella biofilms on a variety of hard surfaces, using three types of disinfectant.

"We found that it was not possible to kill the Salmonella cells using any of the three disinfectants, if the biofilm was allowed to grow for seven days before the disinfectant was applied," says Mary Corcoran, a researcher on the study. Even soaking the biofilms in disinfectant for an hour and a half failed to kill them

The impetus for the study was a European outbreak in which 160 people in 10 countries became ill with gastroenteritis (vomiting and diarrhea) from the Agona serotype of Salmonella, says Corcoran. That outbreak was traced to meat from a major food-processing facility.

"It seems that Salmonella Agona entered into the environment in the part of the facility where meat that was already cooked was being handled, and it had survived and contaminated the cooked meat," says Corcoran. "We were interested in determining if this particular Salmonella, that caused the outbreak, might have something special about it that makes it better at surviving in the environment of a food processing facility. Was it better at forming a dense biofilm or was it more resistant to disinfectants than other Salmonella?"

The research uncovered nothing special about that specific strain.

"We found that all of the types of Salmonella we looked at were able to adopt the specialized biofilm lifestyle on all of the surfaces we looked at, including glass, stainless steel, glazed tile, and plastic, and that the biofilm of Salmonella gets more dense over time, and becomes more firmly attached to the surface," she says.

Corcoran warns that food processing facilities must take strict care to keep Salmonella out of the clean areas where cooked foods get further processing and packaged

"People need to question whether disinfectants that are promoted as killing various types of bacteria are really as effective in real life situations where biofilms can form as they are claimed to be based on experiments that do not use biofilms. A lot of the time, the disinfectant may add very little, if anything, to good cleaning and appropriate food handling practices," says Corcoran. "There is a need for more research to define better methods for killing Salmonella biofilms."

In the US, an estimated million-plus cases of Salmonella occur annually, with 23,000 hospitalizations and 450 fatalities reported each year, according to the Centers for Disease Control and Prevention.

A copy of the manuscript can be found online at http://bit.ly/asmtip0114e. The final version of the article is scheduled for the February 2014 issue of Applied and Environmental Microbiology.

Applied and Environmental Microbiology is a publication of the American Society for Microbiology (ASM). The ASM is the largest single life science society, composed of over 39,000 scientists and health professionals. Its mission is to advance the microbiological sciences as a vehicle for understanding life processes and to apply and communicate this knowledge for the improvement of health and environmental and economic well-being worldwide.

Jim Sliwa | EurekAlert!
Further information:
http://www.asmusa.org

More articles from Life Sciences:

nachricht A "GPS" for molecules
19.12.2014 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Trigger mechanism for recovery after spinal cord injury revealed
19.12.2014 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Anzeige

Anzeige

Event News

Smart Cities

08.12.2014 | Event News

European Polymer Congress 2015 in Dresden/Germany

01.12.2014 | Event News

Regional economic cooperation in Central Asia

21.11.2014 | Event News

 
Latest News

Trade Winds ventilate the Tropical Oceans

19.12.2014 | Earth Sciences

Quantum physics just got less complicated

19.12.2014 | Physics and Astronomy

Europe shows that humans and large predators can share the same landscape

19.12.2014 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>