Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Food processors beware: Salmonella biofilms incredibly resistant to powerful disinfectants

16.01.2014
Once Salmonella bacteria get into a food processing facility and have an opportunity to form a biofilm on surfaces, it is likely to be extraordinarily difficult, if not impossible, to kill it, according to research published ahead of print in the journal Applied and Environmental Microbiology.

Researchers from National University of Ireland, Galway conducted a study in which they attempted to kill Salmonella biofilms on a variety of hard surfaces, using three types of disinfectant.


This image shows photos of biofilms on surfaces at low magnification (300) and high magnification (3000) using electron microscope.

Credit: Photo courtesy of National University of Ireland, Galway

"We found that it was not possible to kill the Salmonella cells using any of the three disinfectants, if the biofilm was allowed to grow for seven days before the disinfectant was applied," says Mary Corcoran, a researcher on the study. Even soaking the biofilms in disinfectant for an hour and a half failed to kill them

The impetus for the study was a European outbreak in which 160 people in 10 countries became ill with gastroenteritis (vomiting and diarrhea) from the Agona serotype of Salmonella, says Corcoran. That outbreak was traced to meat from a major food-processing facility.

"It seems that Salmonella Agona entered into the environment in the part of the facility where meat that was already cooked was being handled, and it had survived and contaminated the cooked meat," says Corcoran. "We were interested in determining if this particular Salmonella, that caused the outbreak, might have something special about it that makes it better at surviving in the environment of a food processing facility. Was it better at forming a dense biofilm or was it more resistant to disinfectants than other Salmonella?"

The research uncovered nothing special about that specific strain.

"We found that all of the types of Salmonella we looked at were able to adopt the specialized biofilm lifestyle on all of the surfaces we looked at, including glass, stainless steel, glazed tile, and plastic, and that the biofilm of Salmonella gets more dense over time, and becomes more firmly attached to the surface," she says.

Corcoran warns that food processing facilities must take strict care to keep Salmonella out of the clean areas where cooked foods get further processing and packaged

"People need to question whether disinfectants that are promoted as killing various types of bacteria are really as effective in real life situations where biofilms can form as they are claimed to be based on experiments that do not use biofilms. A lot of the time, the disinfectant may add very little, if anything, to good cleaning and appropriate food handling practices," says Corcoran. "There is a need for more research to define better methods for killing Salmonella biofilms."

In the US, an estimated million-plus cases of Salmonella occur annually, with 23,000 hospitalizations and 450 fatalities reported each year, according to the Centers for Disease Control and Prevention.

A copy of the manuscript can be found online at http://bit.ly/asmtip0114e. The final version of the article is scheduled for the February 2014 issue of Applied and Environmental Microbiology.

Applied and Environmental Microbiology is a publication of the American Society for Microbiology (ASM). The ASM is the largest single life science society, composed of over 39,000 scientists and health professionals. Its mission is to advance the microbiological sciences as a vehicle for understanding life processes and to apply and communicate this knowledge for the improvement of health and environmental and economic well-being worldwide.

Jim Sliwa | EurekAlert!
Further information:
http://www.asmusa.org

More articles from Life Sciences:

nachricht Scientists spin artificial silk from whey protein
24.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Choreographing the microRNA-target dance
24.01.2017 | UT Southwestern Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>