Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Fly Tree of Life’ Mapped

15.03.2011
‘Fly Tree of Life’ Mapped, Adds Big Branch of Evolutionary Knowledge

Calling it the “new periodic table for flies,” researchers at North Carolina State University and collaborators across the globe have mapped the evolutionary history of flies, providing a framework for further comparative studies on the insects that comprise more than 10 percent of all life on Earth.

The research, published today in the online edition of Proceedings of the National Academy of Sciences, plugs gaps in the 260-million-year history of the fly order Diptera, says Dr. Brian Wiegmann, NC State professor of entomology and primary investigator of the fly tree of life project. While providing the most comprehensive picture of fly life over the ages, the tree should allow scientists to tease out answers to other puzzling questions about flies, like how some traits, such as blood feeding, appeared and reappeared many times across millions of years of evolution.

The results of future studies based on the information provided by the tree may have important impacts on human health and the environment; flies have a substantial impact on society as vectors of killer diseases like malaria, as agricultural pests, and as important pollinators and decomposers.

“Flies have a long history of evolutionary success in all sorts of environments,” Wiegmann says. “For example, there are fly larvae that live in petroleum, in hot springs, in the gills of land crabs, on the dung of millipedes and within bee hives. The fly tree of life allows us to learn more about both the pattern and the process of evolutionary change, and to make predictions about new discoveries.”

Using the most complete set of fly genetic and structural anatomy data ever collected, the paper shows that members of the oldest, still-living fly families are rare, anatomically strange flies with long legs and long wings that grow up in fast-flowing mountain waters.

“Flies' origins and evolutionary history began in wet environments,” Wiegmann says. “As flies diversified, they became more well-suited to terrestrial life. In general, they have flexible life histories that have allowed them to flourish in opportunistic ways.”

Life on Earth has emerged in bursts of diversification, and fly evolution mirrors this process: flies became more diverse in three large episodes occurring at 220, 180 and 65 million years ago. Just as dinosaurs were becoming extinct, flies and moths were experiencing the largest diversification of animals that has occurred in the past 65 million years. The paper also shows the number of times that different fly lifestyles evolved; there are 12 different and independent occasions when flies began feeding on blood, for example, and 18 times when, ironically, flies lost their wings.

Some results were surprising. The study showed that the nearest relatives of Drosophila, the fruit fly that many key scientific discoveries have been based on, are two unusual parasites: bee lice, wingless flies that live on honey bees; and Cryptochetidae, flies used as biological controls of crop pests.

“Flies are more ecologically diverse than any other organism,” Wiegmann says. “There are so many different kinds – 152,000 named species – and they do so many different things that they’ve been a particularly difficult puzzle for scientists. We still haven’t found all the flies that exist, so there are still some surprises out there. But this work unlocks some of the mysteries of the fly evolutionary tree and adds a major branch to the tree of life for all living things.”

Funding for the research came from the National Science Foundation’s ATOL (Assembling the Tree of Life) project.

Note to editors: An abstract of the paper follows.

“Episodic Radiations in the Fly Tree of Life”
Authors: Brian Wiegmann Michelle Trautwein, Isaac Winkler, Norman Barr, Jung-Wook Kim, Matthew Bertone, Brian Cassel, Keith Bayless, North Carolina State University, et al

Published: March 14, 2011, online in Proceedings of the National Academy of Sciences

Abstract: Flies are one of four superradiations of insects (along with beetles, wasps, and moths) that account for the majority of animal life on Earth. Diptera includes species known for their ubiquity (Musca domestica house fly), their role as pests (Anopheles gambiae malaria mosquito), and their value as model organisms across the biological sciences (Drosophila melanogaster). A resolved phylogeny for flies provides a framework for genomic, developmental, and evolutionary studies by facilitating comparisons across model organisms, yet recent research has suggested that fly relationships have been obscured by multiple episodes of rapid diversification. We provide a phylogenomic estimate of fly relationships based on molecules and morphology from 149 of 157 families, including 30 kb from 14 nuclear loci and complete mitochondrial genomes combined with 371 morphological characters. Multiple analyses show support for traditional groups (Brachycera, Cyclorrhapha, and Schizophora) and corroborate contentious findings, such as the anomalous Deuterophlebiidae as the sister group to all remaining Diptera. Our findings reveal that the closest relatives of the Drosophilidae are highly modified parasites (including the wingless Braulidae) of bees and other insects. Furthermore, we use micro-RNAs to resolve a node with implications for the evolution of embryonic development in Diptera. We demonstrate that flies experienced three episodes of rapid radiation—lower Diptera (220 Ma), lower Brachycera (180 Ma), and Schizophora (65 Ma)—and a number of life history transitions to hematophagy, phytophagy, and parasitism in the history of fly evolution over 260 million y.

Mick Kulikowski | Newswise Science News
Further information:
http://www.ncsu.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>