Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How the Fly Flies

17.11.2011
Flies are real flight artists, although they only have small wings compared to their body size.

Scientists at the Max Planck Institute (MPI) of Biochemistry in Martinsried near Munich, Germany, recently identified the genetic switch that regulates the formation of flight muscles. “The gene spalt is essential for the generation of the ultrafast super muscles,” emphasizes Frank Schnorrer, head of the research group “Muscle Dynamics”. “Without spalt, the fly builds only normal leg muscles instead of flight muscles.” The scientists’ results have now been published in Nature.


Flies are excellent flyers. However, without the gene spalt they stay on the ground and walk.
Picture: Frank Schnorrer / Copyright: MPI of Biochemistry

In order to fly efficiently, flies have to flap their small wings very fast. This causes the familiar buzzing and humming of the small beasts. The fruit fly Drosophila melanogaster moves her wings at a frequency of 200 hertz – that means its flight muscles contract and relax 200 times per second. “In contrast, a hundred meters sprinter who moves his legs only a few times per second moves like a snail,” Frank Schnorrer describes. How can the fruit fly flap its wings at such a high frequency?

Muscles control all body movements, including the wing oscillations. However, flight muscles are unique. Their contractions are not only regulated by nerve impulses as usual, but additionally triggered by tension. Every fly has two categories of flight muscles which enable the wing oscillations: One type moves the wings down and, at the same time, stretches the other type which induces its contraction. Such, the wings are pulled up again and stable wing oscillations begin.

No spalt, you are flightless
By means of targeted gene silencing in the fruit fly, scientists in the research group “Muscle Dynamics” at the MPI of Biochemistry have now identified the switch essential for the formation of flight muscles: Spalt. Transcription factors like Spalt play an important role for the correct transcription of the genetic information into RNA and proteins necessary in the respective cell type. Spalt only exists in flight muscles and is responsible for the specific architecture of their myofibrils. These components of muscle fibers alone enable the contraction of a muscle in response to the applied tension during the oscillations. Without Spalt, the flies survive, but are flightless. The flight muscles no longer react to tension and behave like normal leg muscles. Vice versa, the scientists succeeded in creating flight muscle-like muscles in the fly’s legs by only inserting Spalt.

These results could be medically important. “Human body muscles do not have Spalt and are hardly regulated by tension,” Frank Schnorrer explains. “But the human cardiac muscle builds Spalt and the tension inside the ventricle influences the heartbeat intensity. Whether Spalt plays a role in heartbeat regulation, is not yet known and remains to be investigated.” [UD]

Original Publication
Cornelia Schönbauer, Jutta Distler, Nina Jährling, Martin Radolf, Hans-Ulrich Dodt, Manfred Frasch & Frank Schnorrer (2011): Spalt mediates an evolutionarily conserved switch to fibrillar muscle fate in insects. Nature, November 17, 2011.

DOI: 10.1038/nature10559.

Contact
Dr. Frank Schnorrer
Muscle Dynamics
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
E-Mail: schnorrer@biochem.mpg.de
http://www.biochem.mpg.de/schnorrer
Anja Konschak
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Tel. +49 (0) 89 8578-2824
E-Mail: konschak@biochem.mpg.de

Anja Konschak | Max-Planck-Institut
Further information:
http://www.biochem.mpg.de

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>