Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


How the Fly Flies

Flies are real flight artists, although they only have small wings compared to their body size.

Scientists at the Max Planck Institute (MPI) of Biochemistry in Martinsried near Munich, Germany, recently identified the genetic switch that regulates the formation of flight muscles. “The gene spalt is essential for the generation of the ultrafast super muscles,” emphasizes Frank Schnorrer, head of the research group “Muscle Dynamics”. “Without spalt, the fly builds only normal leg muscles instead of flight muscles.” The scientists’ results have now been published in Nature.

Flies are excellent flyers. However, without the gene spalt they stay on the ground and walk.
Picture: Frank Schnorrer / Copyright: MPI of Biochemistry

In order to fly efficiently, flies have to flap their small wings very fast. This causes the familiar buzzing and humming of the small beasts. The fruit fly Drosophila melanogaster moves her wings at a frequency of 200 hertz – that means its flight muscles contract and relax 200 times per second. “In contrast, a hundred meters sprinter who moves his legs only a few times per second moves like a snail,” Frank Schnorrer describes. How can the fruit fly flap its wings at such a high frequency?

Muscles control all body movements, including the wing oscillations. However, flight muscles are unique. Their contractions are not only regulated by nerve impulses as usual, but additionally triggered by tension. Every fly has two categories of flight muscles which enable the wing oscillations: One type moves the wings down and, at the same time, stretches the other type which induces its contraction. Such, the wings are pulled up again and stable wing oscillations begin.

No spalt, you are flightless
By means of targeted gene silencing in the fruit fly, scientists in the research group “Muscle Dynamics” at the MPI of Biochemistry have now identified the switch essential for the formation of flight muscles: Spalt. Transcription factors like Spalt play an important role for the correct transcription of the genetic information into RNA and proteins necessary in the respective cell type. Spalt only exists in flight muscles and is responsible for the specific architecture of their myofibrils. These components of muscle fibers alone enable the contraction of a muscle in response to the applied tension during the oscillations. Without Spalt, the flies survive, but are flightless. The flight muscles no longer react to tension and behave like normal leg muscles. Vice versa, the scientists succeeded in creating flight muscle-like muscles in the fly’s legs by only inserting Spalt.

These results could be medically important. “Human body muscles do not have Spalt and are hardly regulated by tension,” Frank Schnorrer explains. “But the human cardiac muscle builds Spalt and the tension inside the ventricle influences the heartbeat intensity. Whether Spalt plays a role in heartbeat regulation, is not yet known and remains to be investigated.” [UD]

Original Publication
Cornelia Schönbauer, Jutta Distler, Nina Jährling, Martin Radolf, Hans-Ulrich Dodt, Manfred Frasch & Frank Schnorrer (2011): Spalt mediates an evolutionarily conserved switch to fibrillar muscle fate in insects. Nature, November 17, 2011.

DOI: 10.1038/nature10559.

Dr. Frank Schnorrer
Muscle Dynamics
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Anja Konschak
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Tel. +49 (0) 89 8578-2824

Anja Konschak | Max-Planck-Institut
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>